Oscillatory behavior of third order differential equations
HTML articles powered by AMS MathViewer
- by Gary D. Jones
- Proc. Amer. Math. Soc. 43 (1974), 133-136
- DOI: https://doi.org/10.1090/S0002-9939-1974-0333341-1
- PDF | Request permission
Abstract:
It is shown that if $p(x) \leqq 0,q(x) > 0$ and if $y''β + pyβ + qy = 0$ has an oscillatory solution then every nonoscillatory solution is a constant multiple of one nonoscillatory solution.References
- Shair Ahmad and A. C. Lazer, On the oscillatory behavior of a class of linear third order differential equations, J. Math. Anal. Appl. 28 (1969), 681β689. MR 248394, DOI 10.1016/0022-247X(69)90021-3
- Michal GreguΕ‘, Γber einige Eigenschaften der LΓΆsungen der Differentialgleichung $y''β+2Ayβ+(Aβ+b)y=0,$ $A\leq 0$, Czechoslovak Math. J. 11(86) (1961), 106β114 (German, with Russian summary). MR 131028
- Maurice Hanan, Oscillation criteria for third-order linear differential equations, Pacific J. Math. 11 (1961), 919β944. MR 145160
- Gary D. Jones, An asymptotic property of solutions of $y''β+py^{\prime } +qy=0$, Pacific J. Math. 47 (1973), 135β138. MR 326065
- Gary D. Jones, Oscillation properties of third order differential equations, Rocky Mountain J. Math. 3 (1973), 507β513. MR 355193, DOI 10.1216/RMJ-1973-3-3-507
- A. C. Lazer, The behavior of solutions of the differential equation $y''β+p(x)y^{\prime } +q(x)y=0$, Pacific J. Math. 17 (1966), 435β466. MR 193332
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 133-136
- MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9939-1974-0333341-1
- MathSciNet review: 0333341