The role of zero sets in the spectra of hyponormal operators
HTML articles powered by AMS MathViewer
- by C. R. Putnam
- Proc. Amer. Math. Soc. 43 (1974), 137-140
- DOI: https://doi.org/10.1090/S0002-9939-1974-0333808-6
- PDF | Request permission
Abstract:
A compact set in the complex plane is the spectrum of a completely hyponormal operator if and only if the set has positive density.References
- K. F. Clancey and C. R. Putnam, The local spectral behavior of completely subnormal operators, Trans. Amer. Math. Soc. 163 (1972), 239–244. MR 291844, DOI 10.1090/S0002-9947-1972-0291844-5
- K. F. Clancey and C. R. Putnam, The spectra of hyponormal integral operators, Comment. Math. Helv. 46 (1971), 451–456. MR 301573, DOI 10.1007/BF02566857
- Richard Darst and Casper Goffman, A Borel set which contains no rectangles, Amer. Math. Monthly 77 (1970), 728–729. MR 264016, DOI 10.2307/2316204
- R. O. Davies, On accessibility of plane sets and differentiation of functions of two real variables, Proc. Cambridge Philos. Soc. 48 (1952), 215–232. MR 45795, DOI 10.1017/s0305004100027584
- C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Z. 116 (1970), 323–330. MR 270193, DOI 10.1007/BF01111839
- C. R. Putnam, The spectra of completely hyponormal operators, Amer. J. Math. 93 (1971), 699–708. MR 281038, DOI 10.2307/2373465
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 137-140
- MSC: Primary 47B20
- DOI: https://doi.org/10.1090/S0002-9939-1974-0333808-6
- MathSciNet review: 0333808