Switching sets in
Authors:
A. Bruen and R. Silverman
Journal:
Proc. Amer. Math. Soc. 43 (1974), 176-180
MSC:
Primary 50D30; Secondary 05BXX
DOI:
https://doi.org/10.1090/S0002-9939-1974-0333946-8
MathSciNet review:
0333946
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this note, we are mainly concerned with partial spreads of
which cover the same points and have no line in common. Setting
, we show that if
then
. Certain applications of this result to (0, 1) matrices and to translation planes are then discussed.
- [1] R. H. Bruck, Finite nets. II. Uniqueness and imbedding, Pacific J. Math. 13 (1963), 421–457. MR 154824
- [2] A. Bruen, Unimbeddable nets of small deficiency, Pacific J. Math. 43 (1972), 51–54. MR 380614
- [3] P. Dembowski, Finite geometries, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44, Springer-Verlag, Berlin-New York, 1968. MR 0233275
- [4] David A. Foulser, Replaceable translation nets, Proc. London Math. Soc. (3) 22 (1971), 235–264. MR 0291935, https://doi.org/10.1112/plms/s3-22.2.235
- [5] J. W. P. Hirschfeld, Classical configurations over finite fields. I. The double- six and the cubic surface with 27 lines, Rend. Mat. e Appl. (5) 26 (1967), 115–152. MR 233272
- [6] H. J. Ryser, Combinatorial configurations, SIAM J. Appl. Math. 17 (1969), 593–602. MR 256904, https://doi.org/10.1137/0117056
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 50D30, 05BXX
Retrieve articles in all journals with MSC: 50D30, 05BXX
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1974-0333946-8
Keywords:
Partial spread,
replaceable net,
embeddable net,
regulus,
double-six,
translation plane,
matrix
Article copyright:
© Copyright 1974
American Mathematical Society