A finitely generated residually finite group with an unsolvable word problem
HTML articles powered by AMS MathViewer
- by Stephen Meskin
- Proc. Amer. Math. Soc. 43 (1974), 8-10
- DOI: https://doi.org/10.1090/S0002-9939-1974-0335645-5
- PDF | Request permission
Abstract:
The group described in the title is obtained as a quotient of a center-by-metabelian group constructed by P. Hall.References
- V. H. Dyson, The word problem and residually finite groups, Notices Amer. Math. Soc. 11 (1964), 743, Abstract 616-7.
- P. Hall, Finiteness conditions for soluble groups, Proc. London Math. Soc. (3) 4 (1954), 419–436. MR 72873, DOI 10.1112/plms/s3-4.1.419
- P. Hall, On the finiteness of certain soluble groups, Proc. London Math. Soc. (3) 9 (1959), 595–622. MR 110750, DOI 10.1112/plms/s3-9.4.595
- G. Higman, Subgroups of finitely presented groups, Proc. Roy. Soc. London Ser. A 262 (1961), 455–475. MR 130286, DOI 10.1098/rspa.1961.0132
- W. Magnus, Residually finite groups, Bull. Amer. Math. Soc. 75 (1969), 305–316. MR 241525, DOI 10.1090/S0002-9904-1969-12149-X
- A. Włodzimierz Mostowski, On the decidability of some problems in special classes of groups, Fund. Math. 59 (1966), 123–135. MR 224693, DOI 10.4064/fm-59-2-123-135
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 8-10
- MSC: Primary 20F10
- DOI: https://doi.org/10.1090/S0002-9939-1974-0335645-5
- MathSciNet review: 0335645