Invertible measure preserving transformations and pointwise convergence
Author:
J.-M. Belley
Journal:
Proc. Amer. Math. Soc. 43 (1974), 159-162
MSC:
Primary 28A65
DOI:
https://doi.org/10.1090/S0002-9939-1974-0335752-7
MathSciNet review:
0335752
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: An investigation of pointwise convergence of sequences where
lies in the space
of Lebesgue integrable functions on the unit interval,
is an invertible measure preserving transformation on
, and the sequence of polynomials
is uniformly bounded and pointwise convergent for all
such that
.
- [1] H. Davis, Fourier series and orthogonal functions, Allyn and Bacon, Boston, Mass., 1963.
- [2] N. Dinculeanu, Vector measures, Hochschulbücher für Mathematik, Band 64, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966. MR 0206189
- [3] J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Limited, London, 1953. MR 0058896
- [4] Ciprian Foiaş, Sur les mesures spectrales qui interviennent dans la théorie ergodique, J. Math. Mech. 13 (1964), 639–658 (French). MR 0162911
- [5] Paul R. Halmos, Introduction to Hilbert space and the theory of spectral multiplicity, AMS Chelsea Publishing, Providence, RI, 1998. Reprint of the second (1957) edition. MR 1653399
- [6] Paul R. Halmos, Lectures on ergodic theory, Publications of the Mathematical Society of Japan, no. 3, The Mathematical Society of Japan, 1956. MR 0097489
- [7] Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0248482
- [8] Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210528
- [9] B. Sz.-Nagy, Extensions of linear transformations in Hilbert space which extend beyond this space, Ungar, New York, 1960. MR 22 #8338.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A65
Retrieve articles in all journals with MSC: 28A65
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1974-0335752-7
Article copyright:
© Copyright 1974
American Mathematical Society