On a class of analytic functions
HTML articles powered by AMS MathViewer
- by Nobuyuki Suita
- Proc. Amer. Math. Soc. 43 (1974), 249-250
- DOI: https://doi.org/10.1090/S0002-9939-1974-0335785-0
- PDF | Request permission
Abstract:
We show that the class ${\mathfrak {E}_0}$ of analytic functions $f$ in a plane region $\Omega \notin {O_{AB}}$ vanishing at ${z_0} \in \Omega$ and such that $1/f$ omits a set of values of area $\geqq \pi$ is not compact. Here ${O_{AB}}$ denotes the class of Riemann surfaces which have no nonconstant bounded analytic functions. We remark that the extremal functions maximizing $|f’({z_0})|$ in ${\mathfrak {E}_0}$ coincide with linear transformations $w/(1 - cw)$ of those for the same problem in the class ${\mathfrak {B}_0}$ consisting of functions $f$ such that $f({z_0}) = 0$ and $|f(z)| \leqq 1$, i.e. so-called Ahlfors functions. Here $1/c$ is an omitted value of the Ahlfors function.References
- Lars Ahlfors and Arne Beurling, Conformal invariants and function-theoretic null-sets, Acta Math. 83 (1950), 101–129. MR 36841, DOI 10.1007/BF02392634 A. Denjoy, Sur fonctions analytiques uniformes qui restant continues sur un ensemble parfait discontinu de singularités, C.R. Acad. Sci. Paris 149 (1909), 1154-1156.
- S. Ja. Havinson, The analytic capacity of sets related to the non-triviality of various classes of analytic functions, and on Schwarz’s lemma in arbitrary domains, Mat. Sb. (N.S.) 54 (96) (1961), 3–50 (Russian). MR 0136720
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 249-250
- MSC: Primary 30A40
- DOI: https://doi.org/10.1090/S0002-9939-1974-0335785-0
- MathSciNet review: 0335785