A unified treatment of some theorems on positive matrices
HTML articles powered by AMS MathViewer
- by Gérard Letac
- Proc. Amer. Math. Soc. 43 (1974), 11-17
- DOI: https://doi.org/10.1090/S0002-9939-1974-0338037-8
- PDF | Request permission
Abstract:
Various theorems on positive matrices are shown to be corollaries of one general theorem, the proof of which bears on Legendre functions, as used in Rockafellar’s Convex analysis.References
- Henri Caussinus, Contribution à l’analyse statistique des tableaux de corrélation, Ann. Fac. Sci. Univ. Toulouse (4) 29 (1965), 77–182 (1966) (French). MR 242341
- D. J. Hartfiel, Concerning diagonal similarity of irreducible matrices, Proc. Amer. Math. Soc. 30 (1971), 419–425. MR 281731, DOI 10.1090/S0002-9939-1971-0281731-5
- David London, On matrices with a doubly stochastic pattern, J. Math. Anal. Appl. 34 (1971), 648–652. MR 281733, DOI 10.1016/0022-247X(71)90104-1 M. Marcus and M. Newman, The permanent of a symmetric matrix, Notices Amer. Math. Soc. 8 (1961), p. 595.
- Alfréd Rényi, Foundations of probability, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1970. MR 0264723
- R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
- Richard Sinkhorn, A relationship between arbitrary positive matrices and doubly stochastic matrices, Ann. Math. Statist. 35 (1964), 876–879. MR 161868, DOI 10.1214/aoms/1177703591
- Richard Sinkhorn, A relationship between arbitrary positive matrices and stochastic matrices, Canadian J. Math. 18 (1966), 303–306. MR 190160, DOI 10.4153/CJM-1966-033-9 P. Thionet, Sur certaines variantes des projections du tableau d’échanges interindustriels, Bull. Inst. Internat. Statist. 40 (1963), 431-446. —, Note sur le remplissage d’un tableau à double entrée, J. Soc. Statist. Paris, no. 10, 11, 12, (1964), 228-247.
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 11-17
- MSC: Primary 15A48
- DOI: https://doi.org/10.1090/S0002-9939-1974-0338037-8
- MathSciNet review: 0338037