Whitehead groups of certain semidirect products of free groups
HTML articles powered by AMS MathViewer
- by Koo Guan Choo
- Proc. Amer. Math. Soc. 43 (1974), 26-30
- DOI: https://doi.org/10.1090/S0002-9939-1974-0338124-4
- PDF | Request permission
Abstract:
Let $D = {F_1} \times {F_2} \times \cdots \times {F_n}$ be a direct product of $n$ free groups ${F_1},{F_2}, \cdots ,{F_n},\alpha$ an automorphism of $D$ which leaves all but one of the noncyclic factors in $D$ pointwise fixed, $T$ an infinite cyclic group and $F$ another free group. Let $D{ \times _\alpha }T$ be the semidirect product of $D$ and $T$ with respect to $\alpha$ and $(D{ \times _\alpha }T){ \times _{\alpha \times \text {id}T}}F$ the semidirect product of $D{ \times _\alpha }T$ and $F$ with respect to the automorphism $\alpha \times idT$ of $D{ \times _\alpha }T$ induced by $\alpha$. We prove that the Whitehead group of $(D{ \times _\alpha }T){ \times _{\alpha \times idT}}F$ and the projective class group of the integral group ring $Z((D{ \times _\alpha }T){ \times _{\alpha \times idT}}F)$ are trivial. These results extend that of [3].References
- H. Bass, A. Heller, and R. G. Swan, The Whitehead group of a polynomial extension, Inst. Hautes รtudes Sci. Publ. Math. 22 (1964), 61โ79. MR 174605
- Koo Guan Choo, Whitehead Groups of twisted free associative algebras, Pacific J. Math. 50 (1974), 399โ402. MR 374175
- Koo Guan Choo, The projective class group of the fundamental group of a surface is trivial, Proc. Amer. Math. Soc. 40 (1973), 42โ46. MR 323869, DOI 10.1090/S0002-9939-1973-0323869-1
- F. T. Farrell and W.-C. Hsiang, A formula for $K_{1}R_{\alpha }\,[T]$, Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968) Amer. Math. Soc., Providence, R.I., 1970, pp.ย 192โ218. MR 0260836
- John Stallings, Whitehead torsion of free products, Ann. of Math. (2) 82 (1965), 354โ363. MR 179270, DOI 10.2307/1970647
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 26-30
- MSC: Primary 18F25
- DOI: https://doi.org/10.1090/S0002-9939-1974-0338124-4
- MathSciNet review: 0338124