A function space integral for a Banach space of functionals on Wiener space
HTML articles powered by AMS MathViewer
- by G. W. Johnson and D. L. Skoug
- Proc. Amer. Math. Soc. 43 (1974), 141-148
- DOI: https://doi.org/10.1090/S0002-9939-1974-0340536-X
- PDF | Request permission
Abstract:
In an earlier paper the authors established the existence of Cameron and Storvick’s function space integral ${J_q}(F)$ for a class of finite-dimensional functionals $F$. Here we consider a space $A$ of not necessarily finite-dimensional functionals generated by the earlier functionals. We show that $A$ is a Banach space and recognize $A$ as the direct sum of more familiar Banach spaces. We also show that the function space integral $J_q^{{\text {an}}}(F)$ exists for $F \in A$. In contrast we give an example of an ${F_0} \in A$ such that $J_q^{{\text {seq}}}({F_0})$ does not exist.References
- John A. Beekman and Ralph A. Kallman, Gaussian Markov expectations and related integral equations, Pacific J. Math. 37 (1971), 303–317. MR 308353
- R. H. Cameron and D. A. Storvick, An operator valued function space integral and a related integral equation, J. Math. Mech. 18 (1968), 517–552. MR 0236347, DOI 10.1512/iumj.1969.18.18041
- G. W. Johnson and D. L. Skoug, Operator-valued Feynman integrals of finite-dimensional functionals, Pacific J. Math. 34 (1970), 415–425. MR 268728
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 141-148
- MSC: Primary 28A40; Secondary 46G10
- DOI: https://doi.org/10.1090/S0002-9939-1974-0340536-X
- MathSciNet review: 0340536