On Kaehler manifolds satisfying the axiom of antiholomorphic -spheres
Author:
Minoru Harada
Journal:
Proc. Amer. Math. Soc. 43 (1974), 186-189
MSC:
Primary 53C55
DOI:
https://doi.org/10.1090/S0002-9939-1974-0355915-4
MathSciNet review:
0355915
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A Kaehler manifold with the axiom of antiholomorphic -spheres is a complex space form.
- [1] Bang-yen Chen and Koichi Ogiue, Some characterizations of complex space forms, Duke Math. J. 40 (1973), 797–799. MR 331289
- [2]
S. I. Goldberg, The axiom of
-spheres in Kaehler geometry (to appear).
- [3] Dominic S. Leung and Katsumi Nomizu, The axiom of spheres in Riemannian geometry, J. Differential Geometry 5 (1971), 487–489. MR 290288
- [4] Kentaro Yano and Isamu Mogi, On real representations of Kaehlerian manifolds, Ann. of Math. (2) 61 (1955), 170–189. MR 68291, https://doi.org/10.2307/1969627
- [5] Koichi Ogiue, On invariant immersions, Ann. Mat. Pura Appl. (4) 80 (1968), 387–397. MR 244894, https://doi.org/10.1007/BF02413638
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C55
Retrieve articles in all journals with MSC: 53C55
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1974-0355915-4
Keywords:
Kaehler manifold,
complex space form,
axiom of antiholomorphic -spheres
Article copyright:
© Copyright 1974
American Mathematical Society