On Kaehler manifolds satisfying the axiom of antiholomorphic $2$-spheres
HTML articles powered by AMS MathViewer
- by Minoru Harada
- Proc. Amer. Math. Soc. 43 (1974), 186-189
- DOI: https://doi.org/10.1090/S0002-9939-1974-0355915-4
- PDF | Request permission
Abstract:
A Kaehler manifold with the axiom of antiholomorphic $2$-spheres is a complex space form.References
- Bang-yen Chen and Koichi Ogiue, Some characterizations of complex space forms, Duke Math. J. 40 (1973), 797–799. MR 331289 S. I. Goldberg, The axiom of $2$-spheres in Kaehler geometry (to appear).
- Dominic S. Leung and Katsumi Nomizu, The axiom of spheres in Riemannian geometry, J. Differential Geometry 5 (1971), 487–489. MR 290288
- Kentaro Yano and Isamu Mogi, On real representations of Kaehlerian manifolds, Ann. of Math. (2) 61 (1955), 170–189. MR 68291, DOI 10.2307/1969627
- Koichi Ogiue, On invariant immersions, Ann. Mat. Pura Appl. (4) 80 (1968), 387–397. MR 244894, DOI 10.1007/BF02413638
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 186-189
- MSC: Primary 53C55
- DOI: https://doi.org/10.1090/S0002-9939-1974-0355915-4
- MathSciNet review: 0355915