On periodicity of entire functions
HTML articles powered by AMS MathViewer
- by Chung Chun Yang
- Proc. Amer. Math. Soc. 43 (1974), 353-356
- DOI: https://doi.org/10.1090/S0002-9939-1974-0333180-1
- PDF | Request permission
Abstract:
A sequence $S = \{ {s_n}\}$ is said to be a periodic set of period $\tau ( \ne 0)$ if and only if ${S^\ast } = \{ {s_n} + \tau \}$ can be rearranged to be a sequence to coincide with $S$. Let $F$ be the class of all entire functions $f$ satisfying the growth condition: \[ \lim \limits _{r \to \infty } \sup \log \log \log M(r,f)/\log r < 1.\] In this paper it is shown that if $f \in F$ and the zero sets of $f$ and $f’$ both are periodic sets with the same period $\tau$, then $f$ can be expressed as $f(z) = {e^{cz}}g(z)$, where $c$ is a constant and $g(z)$ is a periodic entire function with period $\tau$. A counterexample is exhibited to show that the above condition is a necessary one.References
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- Rolf Nevanlinna, Eindeutige analytische Funktionen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band XLVI, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1953 (German). 2te Aufl. MR 0057330
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 353-356
- MSC: Primary 30A64
- DOI: https://doi.org/10.1090/S0002-9939-1974-0333180-1
- MathSciNet review: 0333180