Characterization of finite-dimensional $Z$-sets
HTML articles powered by AMS MathViewer
- by Nelly Kroonenberg
- Proc. Amer. Math. Soc. 43 (1974), 421-427
- DOI: https://doi.org/10.1090/S0002-9939-1974-0334221-8
- PDF | Request permission
Abstract:
It is proved that closed finite-dimensional subsets of $Q$ and ${l_2}$ are $Z$-sets iff their complement is $1$-ULC. As a corollary, closed finite-dimensional sets of deficiency 1 are shown to be $Z$-sets.References
- R. D. Anderson, Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966), 515β519. MR 190888, DOI 10.1090/S0002-9904-1966-11524-0
- R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365β383. MR 214041, DOI 10.1307/mmj/1028999787
- J. L. Bryant and C. L. Seebeck III, An equivalence theorem for embeddings of compact absolute neighborhood retracts, Proc. Amer. Math. Soc. 20 (1969), 256β258. MR 244972, DOI 10.1090/S0002-9939-1969-0244972-X
- J. L. Bryant, On embeddings of compacta in Euclidean space, Proc. Amer. Math. Soc. 23 (1969), 46β51. MR 244973, DOI 10.1090/S0002-9939-1969-0244973-1
- D. W. Curtis, Property $Z$ for function-graphs and finite-dimensional sets in $I^{\infty }$ and $s$, Compositio Math. 22 (1970), 19β22. MR 259868
- Richard S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1β16. MR 189028, DOI 10.1016/0040-9383(66)90002-4
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- M. A. Ε tanβ²ko, Imbedding of compacta in euclidean space, Mat. Sb. (N.S.) 83 (125) (1970), 234β255 (Russian). MR 0271923, DOI 10.1070/SM1970v012n02ABEH000919
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 421-427
- MSC: Primary 57A20; Secondary 54F35
- DOI: https://doi.org/10.1090/S0002-9939-1974-0334221-8
- MathSciNet review: 0334221