ABSTRACT. In this paper we give an alternative proof, without reference to Urysohn's lemma, of the metrization theorem of Bing [2], Nagata [6], and Smirnov [8] via the theory of symmetric spaces as developed by H. Martin in [5].

A symmetric d on a point set X is a function $X \times X \to [0, \infty)$ satisfying
1. $d(x, y) = 0$ if and only if $x = y$, and
2. $d(x, y) = d(y, x)$. A topology T on X is said to be determined by d provided that for every subset U of X, U belongs to T if and only if it contains an ε-sphere $N(p; \varepsilon) = \{x : d(p, x) < \varepsilon\}$ about each of its points p. The data X, d, and T is called a symmetric space. Such a space need not be Hausdorff or first countable, but H. W. Martin [5] has proved the theorem below.

Theorem 1. Let X be a topological space symmetrizable via a symmetric d. If $d(K, F) > 0$ whenever $K \cap F = \emptyset$, K is compact, and F closed, then X is metrizable.

This theorem strengthened an earlier theorem of A. V. Arhangel'skiï [1], who introduced the notion of symmetric spaces. Martin achieves a proof of Theorem 1 by showing that X must satisfy the hypotheses of Mrs. Frink's theorem [3], a classical result in metrization theory. As a corollary of Theorem 1, Martin (and Arhangel'skiï) obtains the theorem of S. Hanai and K. Morita [4], and A. H. Stone [9] on the metrizability of perfect images of metric spaces.

The purpose of this paper is to obtain the metrization theorem of Bing [2], Nagata [6], and Smirnov [8] as a consequence of Theorem 1. It is interesting to note that Urysohn's lemma is never used in this approach, as was the case in the approach used by D. Rolfsen in [7]. More specifically, let us assume that X is a regular, T_1 space with a σ-locally finite base $\mathcal{B} = \bigcup_{n=1}^{\infty} \mathcal{B}_n$, where \mathcal{B}_n is locally finite and $\mathcal{B}_n \subseteq \mathcal{B}_{n+1}$, $n \geq 1$.

Received by the editors May 8, 1973 and, in revised form, August 10, 1973.

Key words and phrases. Metrizable space, symmetrizable space, σ-locally finite base.
For \(x, y \in X \), \(x \neq y \), put \(m(x, y) = \min \{ n : \exists B \in \mathcal{B}_n \text{ with } x \in B, y \notin B \} \), \(t(x, y) = 1/m(x, y) \), and \(d(x, y) = \max \{ t(x, y), t(y, x) \} \). Also, put \(d(x, x) = 0 \). Then we shall prove the following theorem.

Theorem 2. \(X \) is symmetrizable via \(d \). Furthermore, \(d(K, F) > 0 \) whenever \(K \cap F = \emptyset \), \(K \) is compact, and \(F \) closed. Therefore, \(X \) is metrizable.

Proof. Denote by \(T \) and \(T_d \) the given and \(d \)-induced topologies on \(X \), respectively. We must show that (1) \(T \subset T_d \), (2) \(T_d \subset T \), and (3) \(d(K, F) > 0 \) whenever \(K \cap F = \emptyset \), \(K \) is compact, and \(F \) closed.

To establish (1), assume that \(B \in \mathcal{B} \), \(x \in B \). Choose \(B_x \in \mathcal{B} \) such that \(x \in B_x \subset B \). If \(B_x \in \mathcal{B}_n \), we have \(N(x; 1/n) \subset B_x \subset B \), so that \(B \) is open in \(T_d \).

To establish (2), let \(F \) be a \(T_d \)-closed set. If \(F \) is not \(T \)-closed (\(X \) is first countable because of \(\sigma \)-locally finite \(\mathcal{B} \)), there is a point \(x \notin F \) and a sequence \(x_1, x_2, \cdots \) of points in \(F \) converging to \(x \). We shall show that

(i) \(\lim_{i \to \infty} t(x, x_i) = 0 \),
(ii) \(\inf \{ t(x, x_i) : i \geq 1 \} = 0 \), so that
(iii) \(\inf \{ d(x, x_i) : i \geq 1 \} = 0 \) holds, which contradicts \(d(x, F) > 0 \).

To this end, let \(x \in B \in \mathcal{B}_n \). Denote by \(U \) the intersection of all members of \(\mathcal{B}_n \) containing \(x \). There exists a positive integer \(N \) satisfying \(x_i \in U \) for \(i \geq N \), whence \(t(x, x_i) < 1/n \). Since \(n \) can be chosen as large as we please, (i) follows.

As for (ii), let \(x \in B \in \mathcal{B}_n \). Denote by \(V \) an open neighborhood of \(x \) that intersects only finitely many members of \(\mathcal{B}_n \) and satisfies \(V \subset B \). Choose \(N \) so that \(x_i \in V \) for \(i \geq N \). Whenever \(i \geq N \), let \(U_i \) represent the intersection of all members of \(\mathcal{B}_n \) containing \(x_i \). It follows that for infinitely many such values of \(i \), the sets \(U_i \) are identical, there being only finitely many such intersections. Denoting such a common value by \(U \), it is clear that \(x \in U \), and therefore that \(t(x, x_i) < 1/n \). This establishes (ii), (iii), and (2).

To establish (3), let \(K \) be compact, \(F \) closed, and \(K \cap F = \emptyset \). Let \(B_1, B_2, \cdots, B_k \) be a finite cover of \(K \) by members of \(\mathcal{B} \) with \(B_i \cap F = \emptyset \), \(i = 1, \cdots, k \). Choose \(n \) such that \(B_i \in \mathcal{B}_n \), \(i = 1, \cdots, k \). Then we have \(0 < 1/n \leq t(K, F) \leq d(K, F) \).

References

Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208