A COMPARISON OF METRICS ON TEICHMÜLLER SPACE

MICHELE LINCH

Abstract. The length in the Weil-Petersson metric of the Teichmüller geodesic between two points is computed, yielding the result that the Weil-Petersson metric is dominated by a constant multiple of the Teichmüller metric.

Let $T(G)$ denote a Teichmüller space of Riemann surfaces which arise as the quotients of the unit disc U by finitely generated Fuchsian groups of the first kind G', isomorphic to a fixed group G. We shall show that the Weil-Petersson metric on $T(G)$ is dominated by a constant multiple of the Teichmüller metric, the constant depending on the given Teichmüller space.

1. Beltrami differentials; the Teichmüller metric. Denote by $B(G)$ the space of bounded measurable complex-valued functions on U with the L_∞ norm $||\mu||_\infty=\sup_{z\in U}|\mu(z)|$ satisfying

$$\mu(y(z))\gamma'(z)/\gamma'(z) = \mu(z),$$

and denote by $B_1(G)$ its open unit ball. If $\mu \in B_1(G)$, let w^μ denote the unique quasiconformal mapping of the unit disc onto itself which satisfies the Beltrami equation $w_z = \mu w^\mu z$ and keeps the points 1, i, -1 fixed. If μ depends analytically on a real parameter t, then for all z in U, $w^\mu(z)$ is an analytic function of t.

There is a natural surjection of $B_1(G)$ onto $T(G)$ defined by $\mu \mapsto P_\mu^\mu = \text{the equivalence class of } U/G^\mu$, where $G^\mu = w^\mu \circ G \circ (w^\mu)^{-1}$. Note that $w^0 = \text{identity}$ so that P^0 is the equivalence class of U/G, which we refer to as the origin of $T(G)$ and write $P = P^0$.

It is a consequence of Teichmüller's theorem that given any point $P' \in T(G)$ there exists a unique $v \in B_1(G)$ such that $P_\nu^\nu = P'$ and v is of the form $v = k_\phi/|\phi|$, where $0 \leq k < 1$ and ϕ is a quadratic differential on U/G.

Received by the editors October 18, 1972.

Key words and phrases. Teichmüller space, Riemann surface, Beltrami differential, quasiconformal mapping, Teichmüller metric, Weil-Petersson metric.

This work is a part of the author's doctoral dissertation at Columbia University under the direction of Professor Lipman Bers.

© American Mathematical Society 1974

349
\(\phi \neq 0 \). Note that \(||v||_\infty = k \). The Teichmüller distance between \(P \) and \(P' \) is given by
\[
T(P, P') = \frac{1}{2} \log \frac{1 + k}{1 - k}.
\]
This defines a complete metric on \(T(G) \) (see [4]).

2. The complex analytic structure; the Weil-Petersson metric. Consider the composition of quasiconformal mappings, \(w^\mu \circ w^\nu = w^\rho \). One computes the following relation among the Beltrami differentials [1], [2]:
\[
\rho = \frac{\mu - \lambda}{1 - \frac{\lambda}{\mu}} w_2^\lambda : (w_\lambda)^{-1}.
\]
For fixed \(\lambda \in B_1(G) \), this equation defines \(\rho \in B_1(G^\lambda) \) as an analytic function \(\rho(\mu) \). Its Fréchet derivative at \(\lambda \) in the direction \(v \in B(G) \) is given by
\[
\lim_{t \to 0} \frac{\rho(\lambda + tv) - \rho(\lambda)}{t} = \left(\frac{v}{1 - |\lambda|^2} \right) \circ (w_\lambda)^{-1} = L^\lambda_v.
\]
Then \(L^\lambda_v \in B_1(G) \).

Let \(N(G) \) denote the subspace of \(B(G) \) consisting of Beltrami differentials satisfying
\[
\int_{\mathcal{U}/G} v(z) \phi(z) \, dx \, dy = 0
\]
for all quadratic differentials \(\phi \) on \(\mathcal{U}/G \). The space \(B(G)/N(G) \) has finite complex dimension and is used to define a complex analytic structure on \(T(G) \) as follows (see [1], [2]). Let \(v_1, \ldots, v_s \) be elements of \(B(G) \) whose equivalence classes form a complex basis of \(B(G)/N(G) \). Let \(\zeta = (\zeta_1, \ldots, \zeta_s) \in \mathbb{C}^s \), and set \(m(\zeta) = \zeta_1 v_1 + \cdots + \zeta_s v_s \). Define a mapping of the open set in \(\mathbb{C}^s \) consisting of all \(\zeta \) such that \(||m(\zeta)||_\infty < 1 \) into \(T(G) \) by \(\zeta \mapsto P^m \), \(m = m(\zeta) \). This mapping has a nonvanishing Jacobian at the origin and so maps an open neighborhood of \(0 \in \mathbb{C}^s \) homeomorphically onto an open neighborhood \(\mathcal{N} \) of the origin \(P \in T(G) \). Hence, if \(P^\mu \) is any point in \(\mathcal{N} \), then there exist unique complex numbers \(\zeta(\mu) = (\zeta_1(\mu), \ldots, \zeta_s(\mu)) \) such that \(\zeta(\mu) \mapsto P^\mu \). The \(\zeta(\mu) \) are complex analytic coordinates in \(\mathcal{N} \) (with respect to the basis \(v_1, \ldots, v_s \); again see [1], [2]). Note that \(P^\mu = P^m \), \(m = m(\zeta(\mu)) \), but that \(\mu \) and \(m(\zeta(\mu)) \) are not necessarily congruent modulo \(N(G) \).

Given \(\mu, \nu \in B(G) \), the Petersson inner product is defined by
\[
\langle \mu, \nu \rangle = \int_{\mathcal{U}/G} \mu(z) \overline{\nu(z)} (1 - |z|^2)^{-2} \, dx \, dy.
\]
The space $B(G)/N(G)$ may be identified with the tangent space to $T(G)$ at P [2]. The corresponding Riemannian metric, called the Weil-Petersson metric, has fundamental form

$$\sum g_{ij} d\zeta_i d\overline{\zeta_j}$$

with $g_{ij}(0) = \langle v_i, v_j \rangle$ on $B(G)/N(G)$, and for $\zeta \neq 0$, $g_{ij}(\zeta) = \langle L_{v_i}^m, L_{v_j}^m \rangle$ on $B(G^m)/N(G^m)$, $m = m(\zeta)$.

Denote by $W(P, P')$ the distance between two points P and P' in $T(G)$ in the Weil-Petersson metric.

3. Comparison of metrics. We are now in a position to prove the following theorem.

Theorem. Given two points P and P' of a Teichmüller space $T(G)$, then

$$W(P, P') \leq AT(P, P'),$$

where A is the square root of the Poincaré area of U/G.

Proof. We may assume that P is the origin of $T(G)$. Let $v = k\phi |\phi|$ be the unique Teichmüller differential such that $P' = P^v$. Let $v_1 = \frac{\phi}{|\phi|}$. Since $\phi(z) \neq 0$, we have that $v_1 \notin N(G)$. Let v_2, \ldots, v_s be elements of $B(G)$ such that the equivalence classes of v_1, \ldots, v_s form a basis of $B(G)/N(G)$, and let $\xi(\mu)$ be the coordinate functions in a neighborhood N of P defined by this basis. Finally, let C denote the line $C: t \rightarrow P^{tv}$, $t \in [0, 1]$, and $L(C)$ its length in the Weil-Petersson metric. (C is the Teichmüller geodesic from P to P'.) We shall determine $L(C)$.

Assume first that $C \subset N$, so that

$$\xi(tv) = (tk, 0, \ldots, 0).$$

Then it follows from (3) and (4) that

$$L(C) = \int_0^1 k(L_{v_1}^{tv}, L_{v_1}^{tv})^{1/2} dt.$$

It is easily seen from (1) that $|L_{v_1}^{tv}| = (1 - t^2k^2)^{-1}$ so that from (2),

$$L(C) = \left(\int_{U/G^{tv}} (1 - |z|^2)^{-2} \, dx \, dy \right)^{1/2} \int_0^1 \frac{k}{1 - t^2k^2} \, dt.$$

The left integral is the Poincaré area of the Riemann surface U/G^{tv} which depends only on the isomorphism class of G^{tv} and is therefore a constant for the Teichmüller space $T(G)$. Hence

$$W(P, P') \leq L(C) = AT(P, P')$$

as was to be shown.
If the line C is not contained in N, we cover C by coordinate neighborhoods as follows. At each point $P^a\nu$ of C, $0 \leq a \leq 1$, consider the Beltrami differential $\rho \in B_1(G^a\nu)$ defined by $w^\rho = w^\nu \circ w^a\nu$. It is easily shown that ρ is the unique Teichmüller differential whose image under the surjection $B_1(G^a\nu) \to T(G^a\nu)$ is equal to P^ν. $(T(G^a\nu) = T(G)$ with origin $P^a\nu.)$ Set $\mu = \rho/\|\rho\|_\infty$ and extend to a basis of $B(G^a\nu)/N(G^a\nu)$ as before. Let N^a denote the coordinate neighborhood of $P^a\nu$ with respect to this basis. Since C is compact, a finite number of the N^a cover C. Let these be denoted by N_1, \cdots, N_n, ordered by their origins, with $N_1 = N$. Let $P^{a_0\nu}, P^{a_1\nu}, \cdots, P^{a_n\nu}$, $0 = a_0 < a_1 < \cdots < a_n = 1$, be points of C such that $P^{a_j\nu} \in N_j \cap N_{j+1}$, $j = 1, \cdots, n-1$. If C_j is the segment with endpoints $P^{a_{j-1}\nu}$ and $P^{a_j\nu}$, $j = 1, \cdots, n$, then $C_j \subseteq N_j$. We repeat the previous argument to evaluate $L(C_j)$. (Slightly more work is involved due to the new coordinate system.) We obtain

$$L(C_j) = A \cdot \frac{1}{2} \left(\log \frac{1 + a_{j+1}k}{1 - a_{j+1}k} - \log \frac{1 + a_jk}{1 - a_jk} \right).$$

Summing these to obtain $L(C)$, we again have the desired result.

Bibliography