A comparison of metrics on Teichmüller space
HTML articles powered by AMS MathViewer
- by Michele Linch
- Proc. Amer. Math. Soc. 43 (1974), 349-352
- DOI: https://doi.org/10.1090/S0002-9939-1974-0338453-4
- PDF | Request permission
Abstract:
The length in the Weil-Petersson metric of the Teichmüller geodesic between two points is computed, yielding the result that the Weil-Petersson metric is dominated by a constant multiple of the Teichmüller metric.References
- Lars V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966. Manuscript prepared with the assistance of Clifford J. Earle, Jr. MR 0200442
- Lars V. Ahlfors, Some remarks on Teichmüller’s space of Riemann surfaces, Ann. of Math. (2) 74 (1961), 171–191. MR 204641, DOI 10.2307/1970309
- Lars Ahlfors and Lipman Bers, Riemann’s mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385–404. MR 115006, DOI 10.2307/1970141
- Lipman Bers, Quasiconformal mappings and Teichmüller’s theorem, Analytic functions, Princeton Univ. Press, Princeton, N.J., 1960, pp. 89–119. MR 0114898
- Lipman Bers, Spaces of Riemann surfaces, Proc. Internat. Congress Math. 1958., Cambridge Univ. Press, New York, 1960, pp. 349–361. MR 0124484
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 349-352
- MSC: Primary 32G15
- DOI: https://doi.org/10.1090/S0002-9939-1974-0338453-4
- MathSciNet review: 0338453