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ON POLYNOMIALS SATISFYING
A TURAN TYPE INEQUALITY

GEORGE CSORDAS AND JACK WILLIAMSON

ABSTRACT. For Legendre polynomials P,(x), P. Turdn has
established the inequality

An(x) = Pi(x) = Papa(®)Ppi(x) 20, —1=Sx=1n21,

with equality only for x=+1. This inequality has generated con-
siderable interest, and analogous inequalities have been extended to
various classes of polynomials: ultraspherical, Laguerre, Hermite,
and a class of Jacobi polynomials. Our purpose here is to determine
necessary and sufficient conditions for a general class of polynomials
to satisfy a Turdn type inequality and to characterize the generating
functions of such a class.

1. Introduction. In 1948, Szegd [12] called attention to the following
remarkable inequality of P. Turan for Legendre polynomials P, (x):

(1.1 Ay(x) = Pa(x) = Ppy(MP,4(x) 20, —1Sx=Ln21,
+

with equality only for x=41. This inequality has generated considerable
interest (see, e.g., [4] and [10]). Turan’s proof and three additional proofs
of (1.1) were given by Szegd [12], who also extended the result to ultra-
spherical, Laguerre, and Hermite polynomials. More recently, Gasper
[2] proved the analogue of (1.1) for a class of Jacobi polynomials. Our
purpose here is to determine necessary and sufficient conditions for a
general class of polynomials to satisfy a Turan type inequality and to
characterize the generating functions of such a class.
Let {a,};—o be a sequence of real numbers with g,=1, let

(12) G => (")akxk,
k=0 k
and let

An(x) = g:(x) - gn+l(x)gn—l(x)’ n ; 1.
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If, for each x, — 0o <x< o0, either
(T A(x)>0, n=1, or A(x)=0, n=1,

then we shall say that the sequence {g, }»—o satisfies a Turdn type inequality.
J. L. Burchnall [1] showed that if g,(x) has real, simple zeros for
nz1, then {g,} satisfies condition (T). In addition, it is easy to see that if

(1.3) g(x)=10+ax)", nzZl,

then A, (x)=0, n=1, so that the sequence {g,} defined by (1.3) trivially
satisfies condition (T).

Now it is natural to inquire whether there are other examples of poly-
nomials of the form (1.2) which satisfy a Turan type inequality. By way of
an answer to this question, we shall show that provided the coefficients
{a,} satisfy a mild restriction, the two sequences of polynomials mentioned
above are the only sequences which satisfy a Turan type inequality, that
is, satisfy condition (T). Indeed, if {g,} is a sequence of polynomials
defined by (1.2), then we have

THEOREM 1. If {g,} satisfies condition (T) and if A, (&)=0 for some
£E#£0, n=1, then
gn(x) = (1 + alx)ns n g 1.
THEOREM 2. If A,(x)>0 for all x#0, n=1, and if the sequence of
coefficients {a,} satisfies the condition

(1.4 Ay 10, < 0 whenever a, = 0,
then g, (x) has real, simple zeros for n=1.

We remark that it is not difficult to construct examples which show
that Theorem 2 is false if condition (1.4) is omitted.

2. Proof of Theorem 1. If A,(§)=0 for some &30, n=1, then, in
particular, A,(&§)=(ai—aya,)&*=0. Hence, ai—aya,=0 and a fortiori
A, (x)=(a®—a,a,)x*=0. But then, in view of condition (T),

2.1 Ax)=0, n=12,---.

Now A,(x) is a polynomial of degree 2n with leading coefficient
at—a, ,a,,, so (2.1) implies that
(2'2) afl —AplQp1 = 0, n=1,2,---.

Thus, it follows from (2.2) and an easy induction argument that a,=ay,
n=1,2, . Hence,

gn(x) = i (:)akxk = i (Z)a'ka =1 + a;x)™

k=0

k=0
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3. Proof of Theorem 2. The proof of Theorem 2 depends upon an
algebraic rule, which Pélya [6, p. 21] credits to de Gua, and a lemma.

de Gua’s rule. A polynomial f(x) with real coefficients has real, simple
zeros only, if its derivatives f'(x), f"(x), * - -, f™(x), - - - have the prop-
erty:

If & is real and f(™(&)=0, then f*~1 (&) f("+1(£)<O0.

LeMMA. Under the hypothesis of Theorem 2,
ar—a,14,,,>0, n=12---.

ProoF. The proof will be by induction. First observe that, by
hypothesis, A,(x)=(a}—a,a,)x*>0, x70, and hence,

(31) ai — asa; > 0.
Now suppose
(3.2 a*—aw, >0, a3 —aa; >0, -+, a%_,—a, ,a,>0.

To show that @5—a,_,a,,,>0, note that

2n
Ax) =2 e,
k=2
where
Con = dp — Ay1lpy aNd  Copy = (1 — 1)(A40, 1 — Ap_g@ni)-
Thus, the hypothesis A,(x)>0, x50, implies a2 —a,_,a,,,=0 and
(3.3) a,4,, = a, ,a,,, Wwhenevera?—a, a,,,=0.

Now if a,=0, then it follows from (1.4) that a?—a,_,a,,,>0. If, on
the other hand, a,7#0 and @} —a,_,a,,,=0, then (3.3) implies a,a, =
a,_»a,.,. Consequently, it follows that ai,_,—a,_,a,=0. This contradicts
(3.2) and thus, the induction is complete.

We now proceed with the proof of Theorem 2. First, set

34 P (x) = (1/n)x"g(x")
and observe that
(3.5 Py(x) = P,_y(x).

Next, express x2"A, (x71) in terms of the polynomials defined by (3.4) to
obtain

(3.6) A (xH =0+ 1D'®n— 1)![ "

P2(x) — P,,_l(x)Pnﬂ(x)].

n+1
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Since by hypothesis A, (x)>0 for x50, n=1, (3.6) implies

n
n+1

Moreover, the preceding lemma implies

(3°7) O'”(X) = Pz(x) - Pn—l(x)Pn+1(x) > 0’ X # 0, n ; l'

B8 (m—D'n+ 10,0 =a—a,,a,.>0, nz1.
Thus, by (3.7) and (3.8), we have

3.9 a,.(x) >0, -0 < x < 0, nz=1.
Now suppose that P (£)=0. Then by (3.5) and (3.9), we have
—k
0 < 0u(®) = = Phsl®) = Pasia(OPaa(®
n—k
_— P(k) 2 __ P(k—l) P(k+1)
n—k+1["(§)] n (PR T(E)

= —PYO(OPEDE).
Thus,

PGP <0, k=1,-",n—1,

and de Gua’s rule implies P,(x) has real, simple zeros for n=1. Since
g.(¥)=n! x"P,(x1), it follows that g, (x) has real, simple zeros for
n=1.

Theorem 2 has the following immediate but interesting

COROLLARY. Let A,(x) and {a,} satisfy the hypothesis of Theorem 2
and set

gn.p(x) = Z (Z)ak+pxka n g 1, p ; 1.

k=0

Then g, ,(x) has real, simple zeros and, for every p=1, the sequence
{gn.»} satisfies condition (T).

PRrROOF. Since

!
na) = s €

and g,.,(x) has real, simple zeros, Rolle’s theorem implies that g, ,(x)
has real, simple zeros. The assertion that {g, ,} satisfies condition (T),
for p=1, then follows from Burchnall’s result mentioned in the Introduc-
tion.
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4. The generating functions of polynomials satisfying condition (T).
Suppose

4.1) @ =S ek (@=1
k=0

is holomorphic in a neighborhood of the origin. It is well known (see,
e.g., [8]) that the sequence of polynomials {g,}, defined by (1.2), is
generated by e*f(xz), that is, e*f (xz) = > g,(x)z"/n!, while the sequence
of polynomials {P,}, defined by (3.4), is generated by e**f(z), that is,
e”*f(2)=2n0 P,(x)z". (The polynomials P,(x) are called Appell poly-
nomials.)

Of special interest is the case when f(2) is of the form

42) f@) = e[ (1 = 2fz,)e
n=1

where y =0, 8, z, are real and 32, z,,%< co.

We shall say that an entire function f(z) of the form (4.2) belongs to
the class £-2 (Laguerre-Pdlya) and we shall write f(z) € £- 2.

If f(2) e £-2 is given by (4.1), then it is well known [7, p. 110] that,
for n21, g,(x)=24_o ()a;x* has only real zeros. Consequently, it follows
([3, §4.3] or [9, p. 76]) that

43) al—a,,a,,,>0, k=1, or a—a,a,,=0, k=1
(Note that the second condition in (4.3) implies that f(z)=e™*.) Since

f(2) € L-Z clearly implies e°f (xz) € L-Z and e**f (z) € £- P for every x,
— < x< 0, the following proposition is a consequence of (4.3).

PROPOSITION 1. Let f(z) be given by (4.1). If f(z) € L-P, then the
polynomial sequences {g,} and {n! P} generated by e*f(xz) and e**f(z)
respectively, satisfy condition (T).

Conversely, as a consequence of Theorem 2, we have

ProOPOSITION 2. If {@}x20, ay=1, is a sequence of real numbers which
satisfies (1.4) and if the sequence {g,} defined by (1.2) satisfies condition (T)
then the function

f(2) = i a,z"[k!
k=0

belongs to the class L-2.

! Szegd [12] used this condition to show that many of the classical polynomials
satisfy a Turdn type inequality.
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ProoF. By Theorems 1 and 2, g (x), n=1, has only real zeros, and
hence, the polynomial G,(z), n=1, where

6. = &(2) =z%(1 B (1)

has only real zeros. Furthermore, since

G.(0) =1, [G,0) =la] and |G (0) = 4 lacl,

it follows (see, e.g., Szasz [11]) that {G,(z)} is a normal family. Now
f(2) is clearly the unique limit function of the sequence {G,(z)}; thus,
{G.(2)} converges uniformly to f(z) on every compact subset of the plane.
Since G,(z), n=1, has only real zeros, a classical result of Pélya [5]
implies that f(z) € £-2.
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