ON POLYNOMIALS SATISFYING A TURÁN TYPE INEQUALITY

GEORGE CSORDAS AND JACK WILLIAMSON

ABSTRACT. For Legendre polynomials $P_n(x)$, P. Turán has established the inequality

$$\Delta_n(x) = P_n^2(x) - P_{n+1}(x)P_{n-1}(x) \ge 0, \quad -1 \le x \le 1, n \ge 1,$$

with equality only for $x=\pm 1$. This inequality has generated considerable interest, and analogous inequalities have been extended to various classes of polynomials: ultraspherical, Laguerre, Hermite, and a class of Jacobi polynomials. Our purpose here is to determine necessary and sufficient conditions for a general class of polynomials to satisfy a Turán type inequality and to characterize the generating functions of such a class.

1. Introduction. In 1948, Szegö [12] called attention to the following remarkable inequality of P. Turán for Legendre polynomials $P_n(x)$:

$$(1.1) \quad \Delta_n(x) = P_n^2(x) - P_{n+1}(x)P_{n-1}(x) \ge 0, \qquad -1 \le x \le 1, \ n \ge 1,$$

with equality only for $x=\pm 1$. This inequality has generated considerable interest (see, e.g., [4] and [10]). Turán's proof and three additional proofs of (1.1) were given by Szegö [12], who also extended the result to ultraspherical, Laguerre, and Hermite polynomials. More recently, Gasper [2] proved the analogue of (1.1) for a class of Jacobi polynomials. Our purpose here is to determine necessary and sufficient conditions for a general class of polynomials to satisfy a Turán type inequality and to characterize the generating functions of such a class.

Let $\{a_k\}_{k=0}^{\infty}$ be a sequence of real numbers with $a_0=1$, let

$$g_n(x) = \sum_{k=0}^n \binom{n}{k} a_k x^k,$$

and let

$$\Delta_n(x) = g_n^2(x) - g_{n+1}(x)g_{n-1}(x), \qquad n \ge 1.$$

Received by the editors June 4, 1973.

AMS (MOS) subject classifications (1970). Primary 26A75, 30A08, 33A70; Secondary 30A64, 30A74.

Key words and phrases. Inequality, Turán type inequality, real, simple zeros, generating functions, entire functions.

If, for each x, $-\infty < x < \infty$, either

(T)
$$\Delta_n(x) > 0$$
, $n \ge 1$, or $\Delta_n(x) = 0$, $n \ge 1$,

then we shall say that the sequence $\{g_n\}_{n=0}^{\infty}$ satisfies a Turán type inequality.

J. L. Burchnall [1] showed that if $g_n(x)$ has real, simple zeros for $n \ge 1$, then $\{g_n\}$ satisfies condition (T). In addition, it is easy to see that if

$$(1.3) g_n(x) = (1 + a_1 x)^n, n \ge 1,$$

then $\Delta_n(x) \equiv 0$, $n \geq 1$, so that the sequence $\{g_n\}$ defined by (1.3) trivially satisfies condition (T).

Now it is natural to inquire whether there are other examples of polynomials of the form (1.2) which satisfy a Turán type inequality. By way of an answer to this question, we shall show that provided the coefficients $\{a_k\}$ satisfy a mild restriction, the two sequences of polynomials mentioned above are the only sequences which satisfy a Turán type inequality, that is, satisfy condition (T). Indeed, if $\{g_n\}$ is a sequence of polynomials defined by (1.2), then we have

THEOREM 1. If $\{g_n\}$ satisfies condition (T) and if $\Delta_n(\xi)=0$ for some $\xi\neq 0$, $n\geq 1$, then

$$g_n(x) = (1 + a_1 x)^n, \quad n \ge 1.$$

THEOREM 2. If $\Delta_n(x) > 0$ for all $x \neq 0$, $n \geq 1$, and if the sequence of coefficients $\{a_k\}$ satisfies the condition

$$(1.4) a_{k-1}a_{k+1} < 0 whenever a_k = 0,$$

then $g_n(x)$ has real, simple zeros for $n \ge 1$.

We remark that it is not difficult to construct examples which show that Theorem 2 is false if condition (1.4) is omitted.

2. **Proof of Theorem 1.** If $\Delta_n(\xi)=0$ for some $\xi\neq 0$, $n\geq 1$, then, in particular, $\Delta_1(\xi)=(a_1^2-a_0a_2)\xi^2=0$. Hence, $a_1^2-a_0a_2=0$ and a fortiori $\Delta_1(x)=(a_1^2-a_0a_2)x^2\equiv 0$. But then, in view of condition (T),

$$\Delta_n(x) \equiv 0, \qquad n = 1, 2, \cdots.$$

Now $\Delta_n(x)$ is a polynomial of degree 2n with leading coefficient $a_n^2 - a_{n-1}a_{n+1}$, so (2.1) implies that

(2.2)
$$a_n^2 - a_{n-1}a_{n+1} = 0, \quad n = 1, 2, \cdots.$$

Thus, it follows from (2.2) and an easy induction argument that $a_n = a_1^n$, $n=1, 2, \cdots$. Hence,

$$g_n(x) = \sum_{k=0}^n \binom{n}{k} a_k x^k = \sum_{k=0}^n \binom{n}{k} a_1^k x^k = (1 + a_1 x)^n.$$

3. Proof of Theorem 2. The proof of Theorem 2 depends upon an algebraic rule, which Pólya [6, p. 21] credits to de Gua, and a lemma.

de Gua's rule. A polynomial f(x) with real coefficients has real, simple zeros only, if its derivatives f'(x), f''(x), \cdots , $f^{(n)}(x)$, \cdots have the property:

If ξ is real and $f^{(n)}(\xi) = 0$, then $f^{(n-1)}(\xi)f^{(n+1)}(\xi) < 0$.

LEMMA. Under the hypothesis of Theorem 2,

$$a_n^2 - a_{n-1}a_{n+1} > 0, \qquad n = 1, 2, \cdots.$$

PROOF. The proof will be by induction. First observe that, by hypothesis, $\Delta_1(x) = (a_1^2 - a_0 a_2)x^2 > 0$, $x \neq 0$, and hence,

$$(3.1) a_1^2 - a_0 a_2 > 0.$$

Now suppose

$$(3.2) \quad a_1^2 - a_0 a_2 > 0, \quad a_2^2 - a_1 a_3 > 0, \quad \cdots, \quad a_{n-1}^2 - a_{n-2} a_n > 0.$$

To show that $a_n^2 - a_{n-1}a_{n+1} > 0$, note that

$$\Delta_n(x) = \sum_{k=2}^{2n} c_k x^k,$$

where

$$c_{2n} = a_n^2 - a_{n-1}a_{n+1}$$
 and $c_{2n-1} = (n-1)(a_na_{n-1} - a_{n-2}a_{n+1})$.

Thus, the hypothesis $\Delta_n(x) > 0$, $x \neq 0$, implies $a_n^2 - a_{n-1}a_{n+1} \ge 0$ and

(3.3)
$$a_n a_{n-1} = a_{n-2} a_{n+1}$$
 whenever $a_n^2 - a_{n-1} a_{n+1} = 0$.

Now if $a_n=0$, then it follows from (1.4) that $a_n^2-a_{n-1}a_{n+1}>0$. If, on the other hand, $a_n\neq 0$ and $a_n^2-a_{n-1}a_{n+1}=0$, then (3.3) implies $a_na_{n-1}=a_{n-2}a_{n+1}$. Consequently, it follows that $a_{n-1}^2-a_{n-2}a_n=0$. This contradicts (3.2) and thus, the induction is complete.

We now proceed with the proof of Theorem 2. First, set

(3.4)
$$P_n(x) = (1/n!)x^n g_n(x^{-1})$$

and observe that

$$(3.5) P'_n(x) = P_{n-1}(x).$$

Next, express $x^{2n}\Delta_n(x^{-1})$ in terms of the polynomials defined by (3.4) to obtain

$$(3.6) \quad x^{2n}\Delta_n(x^{-1}) = (n+1)! (n-1)! \left[\frac{n}{n+1} P_n^2(x) - P_{n-1}(x) P_{n+1}(x) \right].$$

Since by hypothesis $\Delta_n(x) > 0$ for $x \neq 0$, $n \geq 1$, (3.6) implies

(3.7)
$$\sigma_n(x) = \frac{n}{n+1} P_n^2(x) - P_{n-1}(x) P_{n+1}(x) > 0, \quad x \neq 0, n \ge 1.$$

Moreover, the preceding lemma implies

$$(3.8) \quad (n-1)! (n+1)! \ \sigma_n(0) = a_n^2 - a_{n-1} a_{n+1} > 0, \qquad n \ge 1.$$

Thus, by (3.7) and (3.8), we have

(3.9)
$$\sigma_n(x) > 0, \quad -\infty < x < \infty, \quad n \ge 1.$$

Now suppose that $P_n^{(k)}(\xi)=0$. Then by (3.5) and (3.9), we have

$$\begin{split} 0 &< \sigma_{n-k}(\xi) = \frac{n-k}{n-k+1} P_{n-k}^2(\xi) - P_{n-k+1}(\xi) P_{n-k-1}(\xi) \\ &= \frac{n-k}{n-k+1} [P_n^{(k)}(\xi)]^2 - P_n^{(k-1)}(\xi) P_n^{(k+1)}(\xi) \\ &= -P_n^{(k-1)}(\xi) P_n^{(k+1)}(\xi). \end{split}$$

Thus,

$$P_n^{(k-1)}(\xi)P_n^{(k+1)}(\xi) < 0, \qquad k = 1, \dots, n-1,$$

and de Gua's rule implies $P_n(x)$ has real, simple zeros for $n \ge 1$. Since $g_n(x) = n! \ x^{-n} P_n(x^{-1})$, it follows that $g_n(x)$ has real, simple zeros for $n \ge 1$.

Theorem 2 has the following immediate but interesting

COROLLARY. Let $\Delta_n(x)$ and $\{a_n\}$ satisfy the hypothesis of Theorem 2 and set

$$g_{n,p}(x) = \sum_{k=0}^{n} {n \choose k} a_{k+p} x^k, \quad n \ge 1, \ p \ge 1.$$

Then $g_{n,p}(x)$ has real, simple zeros and, for every $p \ge 1$, the sequence $\{g_{n,p}\}$ satisfies condition (T).

PROOF. Since

$$g_{n,p}(x) = \frac{p!}{(n+p)!} g_{n+p}^{(p)}(x)$$

and $g_{n+p}(x)$ has real, simple zeros, Rolle's theorem implies that $g_{n,p}(x)$ has real, simple zeros. The assertion that $\{g_{n,p}\}$ satisfies condition (T), for $p \ge 1$, then follows from Burchnall's result mentioned in the Introduction.

4. The generating functions of polynomials satisfying condition (T). Suppose

(4.1)
$$f(z) = \sum_{k=0}^{\infty} a_k z^k / k! \qquad (a_0 = 1)$$

is holomorphic in a neighborhood of the origin. It is well known (see, e.g., [8]) that the sequence of polynomials $\{g_n\}$, defined by (1.2), is generated by $e^z f(xz)$, that is, $e^z f(xz) = \sum_{n=0}^{\infty} g_n(x) z^n / n!$, while the sequence of polynomials $\{P_n\}$, defined by (3.4), is generated by $e^{xz} f(z)$, that is, $e^{xz} f(z) = \sum_{n=0}^{\infty} P_n(x) z^n$. (The polynomials $P_n(x)$ are called Appell polynomials.)

Of special interest is the case when f(z) is of the form

(4.2)
$$f(z) = e^{-\gamma z^2 + \beta z} \prod_{n=1}^{\infty} (1 - z/z_n) e^{z/z_n}$$

where $\gamma \ge 0$, β , z_n are real and $\sum_{n=1}^{\infty} z_n^{-2} < \infty$.

We shall say that an entire function f(z) of the form (4.2) belongs to the class \mathcal{L} - \mathcal{P} (Laguerre-Pólya) and we shall write $f(z) \in \mathcal{L}$ - \mathcal{P} .

If $f(z) \in \mathcal{L}$ - \mathcal{P} is given by (4.1), then it is well known [7, p. 110] that, for $n \ge 1$, $g_n(x) = \sum_{k=0}^n \binom{n}{k} a_k x^k$ has only real zeros. Consequently, it follows ([3, §4.3] or [9, p. 76]) that

(4.3)
$$a_k^2 - a_{k-1}a_{k+1} > 0$$
, $k \ge 1$, or $a_k^2 - a_{k-1}a_{k+1} = 0$, $k \ge 1$.

(Note that the second condition in (4.3) implies that $f(z) = e^{a_1 z}$.) Since $f(z) \in \mathcal{L}$ - \mathcal{P} clearly implies $e^z f(xz) \in \mathcal{L}$ - \mathcal{P} and $e^{xz} f(z) \in \mathcal{L}$ - \mathcal{P} for every x, $-\infty < x < \infty$, the following proposition is a consequence of (4.3).

PROPOSITION 1. Let f(z) be given by (4.1). If $f(z) \in \mathcal{L}$ - \mathcal{P} , then the polynomial sequences $\{g_n\}$ and $\{n!\ P_n\}$ generated by $e^z f(xz)$ and $e^{xz} f(z)$ respectively, satisfy condition (T).

Conversely, as a consequence of Theorem 2, we have

PROPOSITION 2. If $\{a_k\}_{k=0}^{\infty}$, $a_0=1$, is a sequence of real numbers which satisfies (1.4) and if the sequence $\{g_n\}$ defined by (1.2) satisfies condition (T) then the function

$$f(z) = \sum_{k=0}^{\infty} a_k z^k / k!$$

belongs to the class \mathcal{L} - \mathcal{P} .

¹ Szegö [12] used this condition to show that many of the classical polynomials satisfy a Turán type inequality.

PROOF. By Theorems 1 and 2, $g_n(x)$, $n \ge 1$, has only real zeros, and hence, the polynomial $G_n(z)$, $n \ge 1$, where

$$G_n(z) = g_n\left(\frac{z}{n}\right) = \sum_{k=0}^n \frac{a_k}{k!} \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right) z^k$$

has only real zeros. Furthermore, since

$$G_n(0) = 1$$
, $|G'_n(0)| = |a_1|$ and $|G''_n(0)| \le \frac{1}{2} |a_2|$,

it follows (see, e.g., Szász [11]) that $\{G_n(z)\}$ is a normal family. Now f(z) is clearly the unique limit function of the sequence $\{G_n(z)\}$; thus, $\{G_n(z)\}$ converges uniformly to f(z) on every compact subset of the plane. Since $G_n(z)$, $n \ge 1$, has only real zeros, a classical result of Pólya [5] implies that $f(z) \in \mathcal{L}$ - \mathcal{P} .

REFERENCES

- 1. J. L. Burchnall, An algebraic property of the classical polynomials, Proc. London Math. Soc. (3) 1 (1951), 232-240. MR 13, 648.
- 2. G. Gasper, An inequality of Turán type for Jacobi polynomials, Proc. Amer. Math. Soc. 32 (1972), 435-439. MR 44 #7013.
- 3. G. H. Hardy, J. E. Littlewood and G. Pólya, *Inequalities*, Cambridge Univ. Press, Cambridge, 1934.
- 4. S. Karlin and G. Szegö, On certain determinants whose elements are orthogonal polynomials, J. Analyse Math. 8 (1960/61), 1-157. MR 26 #539.
- 5. G. Pólya, Über Annäherung durch Polynome mit lauter reellen Wurzeln, Rend. Circ. Mat. Palermo 36 (1913), 279-295.
- 6. —, Some problems connected with Fourier's work on transcendental equations, Quart. J. Math. Oxford Ser. 1 (1930), 21-34.
- 7. G. Pólya and J. Schur, Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen, J. Reine Angew. Math. 144 (1914), 89-113.
- 8. E. D. Rainville, Certain generating functions and associated polynomials, Amer. Math. Monthly 52 (1945), 239-250. MR 6, 211.
- 9. J. Schur, Zwei Sätze über algebraische Gleichungen mit lauter reellen Wurzeln, J. Reine Angew. Math. 144 (1914), 75-88.
- 10. H. Skovgaard, On inequalities of the Turán type, Math. Scand. 2 (1954), 65-73. MR 16. 118
- 11. O. Szász, On sequences of polynomials and the distribution of their zeros, Bull. Amer. Math. Soc. 49 (1943), 377-383. MR 4, 273.
- 12. G. Szegö, On an inequality of P. Turán concerning Legendre polynomials, Bull. Amer. Math. Soc. 54 (1948), 401–405. MR 9, 429.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAWAII, HONOLULU, HAWAII 96822