On polynomials satisfying a Turán type inequality
HTML articles powered by AMS MathViewer
- by George Csordas and Jack Williamson
- Proc. Amer. Math. Soc. 43 (1974), 367-372
- DOI: https://doi.org/10.1090/S0002-9939-1974-0338487-X
- PDF | Request permission
Abstract:
For Legendre polynomials ${P_n}(x)$, P. Turán has established the inequality \[ {\Delta _n}(x) = P_n^2(x) - {P_{n + 1}}(x){P_{n - 1}}(x) \geqq 0,\quad - 1 \leqq x \leqq 1,n \geqq 1,\] with equality only for $x = \pm 1$. This inequality has generated considerable interest, and analogous inequalities have been extended to various classes of polynomials: ultraspherical, Laguerre, Hermite, and a class of Jacobi polynomials. Our purpose here is to determine necessary and sufficient conditions for a general class of polynomials to satisfy a Turán type inequality and to characterize the generating functions of such a class.References
- J. L. Burchnall, An algebraic property of the classical polynomials, Proc. London Math. Soc. (3) 1 (1951), 232–240. MR 45865, DOI 10.1112/plms/s3-1.1.232
- George Gasper, An inequality of Turán type for Jacobi polynomials, Proc. Amer. Math. Soc. 32 (1972), 435–439. MR 289826, DOI 10.1090/S0002-9939-1972-0289826-8 G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934.
- S. Karlin and G. Szegö, On certain determinants whose elements are orthogonal polynomials, J. Analyse Math. 8 (1960/61), 1–157. MR 142972, DOI 10.1007/BF02786848 G. Pólya, Über Annäherung durch Polynome mit lauter reellen Wurzeln, Rend. Circ. Mat. Palermo 36 (1913), 279-295. —, Some problems connected with Fourier’s work on transcendental equations, Quart. J. Math. Oxford Ser. 1 (1930), 21-34. G. Pólya and J. Schur, Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen, J. Reine Angew. Math. 144 (1914), 89-113.
- E. D. Rainville, Certain generating functions and associated polynomials, Amer. Math. Monthly 52 (1945), 239–250. MR 11751, DOI 10.2307/2305876 J. Schur, Żwei Sätze über algebraische Gleichungen mit lauter reellen Wurzeln, J. Reine Angew. Math. 144 (1914), 75-88.
- H. Skovgaard, On inequalities of the Turán type, Math. Scand. 2 (1954), 65–73. MR 63415, DOI 10.7146/math.scand.a-10396
- Otto Szász, On sequences of polynomials and the distribution of their zeros, Bull. Amer. Math. Soc. 49 (1943), 377–383. MR 8274, DOI 10.1090/S0002-9904-1943-07919-0
- G. Szegö, On an inequality of P. Turán concerning Legendre polynomials, Bull. Amer. Math. Soc. 54 (1948), 401–405. MR 23954, DOI 10.1090/S0002-9904-1948-09017-6
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 367-372
- MSC: Primary 33A70
- DOI: https://doi.org/10.1090/S0002-9939-1974-0338487-X
- MathSciNet review: 0338487