ON ISOMORPHIC GROUPS AND HOMEOMORPHIC SPACES

J. S. YANG

Abstract. Let $C(X, G)$ denote the group of continuous functions from a topological space X into a topological group G with the pointwise multiplication. Some classes of SQ-pairs and properties of the corresponding topological group $C(X, G)$ with the compact-open topology are investigated. We also show that the existence of a group isomorphism between groups $C(X, G)$ and $C(Y, G)$ implies the existence of a homeomorphism between X and Y, if (X, G) and (Y, G) are SQ-pairs.

1. Introduction. For a topological space X and a topological group G, let $C(X, G)$ be the group of all continuous functions from X into G with the pointwise multiplication, that is, $(fg)(x) = f(x)g(x)$; the identity element of the group $C(X, G)$ is the constant function $I_0(X, G)$, or simply I_0, which maps every x in X into the identity element e of G. It is well known that if $C(X, G)$ is endowed with the compact-open topology, it becomes a topological group. It is clear that if h is a homeomorphism of X onto Y, then $f \mapsto f \circ h$ is an isomorphism from $C(Y, G)$ onto $C(X, G)$ which maps every constant function on Y into the corresponding constant function on X. We are concerned, in this paper, with the question: If a group isomorphism exists between $C(Y, G)$ and $C(X, G)$ which maps every constant function on Y into the corresponding constant function on X, does there exist a homeomorphism between X and Y? In general, the answer to this question is, of course, no, for we may take X to be a noncompact pseudocompact space, and then there is a ring isomorphism between the rings $C(X, R)$ and $C(\beta X, R)$ but X and βX are not homeomorphic.

We find that the answer to the above question is yes for certain pairs (X, G) of topological space X and topological group G. Such pairs are termed SQ-pairs as defined in [9]. §3 is devoted to proving this assertion by showing first that, if X is a k-space, X is homeomorphic to the space of all c-continuous homomorphisms of the topological group $C(X, G)$ onto the topological group G with F-normal subgroups as kernels and...
endowed with the compact-open topology. We disclose some classes of SΩ-pairs, and some properties of \(C(X, G) \) in §2.

All topological spaces considered here are assumed to be Hausdorff.

2. SΩ-pairs. For each \(p \in X \), let \(M_p = \{ f \in C(X, G) : f(p) = e \} \), and let \(h_p \) be the evaluation map of \(C(X, G) \) onto \(G \) defined by \(h_p(f) = f(p) \).

For each \(r \in G \), let \(r \) denote the constant function in \(C(X, G) \) which maps \(X \) into \(r \). Then \(h_p \) is a continuous homomorphism of \(C(X, G) \) onto \(G \) with \(M_p \) as its kernel and maps every constant function \(r \) into \(r \). Hence we see that \(C(X, G)/M_p \) is isomorphic to \(G \) under the continuous isomorphism that maps every coset \(eM_p \) into \(e \). Note that for each \(p \) in \(X \), every coset \(eM_p \) contains exactly one constant map, namely \(e \). For the sake of convenience, let us call a homomorphism of \(C(X, G) \) (or \(C(X, G)/M \) onto \(G \)) a \(c \)-homomorphism if it maps every \(r \) (resp. \(rM \)) into \(r \). Every evaluation map is a \(c \)-continuous homomorphism of \(C(X, G) \) onto \(G \).

In contrast to the fact that every nonzero homomorphism of \(C(X) = C(X, R) \) onto \(R \) is a \(c \)-homomorphism [5, 10.5], not every continuous homomorphism of \(C(X, G) \) onto \(G \) is a \(c \)-continuous homomorphism, as the following example shows.

Example. Let \(G \) be the additive group of integers modulo 2 with the discrete topology. Then \(C(G, G) = \{ 0, f_1, f_2, f_3 \} \), where \(f_1 \) is the function which maps \(G \) into 1, \(f_2 \) is the function which maps 1 into 1 and 0 into 0, and \(f_3 \) is the one which maps 0 into 1 and 1 into 0. The compact-open topology for \(C(G, G) \) is the discrete topology. If we define a mapping \(h : C(G, G) \rightarrow G \) by defining \(h(0) = h(f_1) = 0 \), \(h(f_2) = h(f_3) = 1 \), then \(h \) is an onto homomorphism, yet it is not a \(c \)-homomorphism.

For \(f \in C(X, G) \), we let \(Z(f) = \{ x \in X : f(x) = e \} \), and for a subgroup \(M \) of \(C(X, G) \), let \(Z(M) = \{ Z(f) : f \in M \} \). Note that, for any \(f \) and \(g \) in \(C(X, G) \),

\[Z(fg) \supset Z(f) \cap Z(g), \quad Z(f^{-1}) = Z(f) \quad \text{and} \quad Z(fgf^{-1}) = Z(g). \]

Definition 1 [9]. We shall call a pair \((X, G)\) of a topological space \(X \) and a topological group \(G \) an \(S \)-pair if, for each closed subset \(C \) of \(X \) and \(x \notin C \), there exists \(f \in C(X, G) \) such that \(Z(f) \supset C \) and \(f(x) \neq e \).

It is clear that \((X, R)\) is an \(S \)-pair for every completely regular space, and that if \((X, G)\) is an \(S \)-pair then \(X \) is completely regular.

Remark 1. If \(X \) is a topological space such that each \(x \) in \(X \) has a local base \(U_x \) satisfying the property that, for each \(U \) in \(U_x \) there exists a continuous function \(f \) of \(U \) into \(G \) such that \(f(x) \neq e \) but \(f(y) = e \) for each \(y \) in \(U - U \), then \((X, G)\) is an \(S \)-pair. To see this, let \(C \) be a closed subset of \(X \) and \(x \notin C \). Then, for some \(U \) in \(U_x \), \(x \in U \subset X - C \); and let \(f \) be a continuous function on \(U \) into \(G \) such that \(f(x) \neq e \) but \(f(y) = e \) for each \(y \)
in $\bar{U} = U$. Define $g: X \rightarrow G$ such that $g = f$ on \bar{U} and $g(y) = e$ for $y \notin \bar{U}$. Then $g \in C(X, G)$, $Z(g) \supseteq C$, and $g(x) \neq e$.

Remark 2. If X is completely regular, and G is path connected, then (X, G) is an S-pair. To see this let $t \neq e$ be in G. If C is a closed subset of X and $x \notin C$, let f be a continuous function of X into $[0, 1]$ such that $f(x) = 1$ and $f(C) = \{0\}$, and let $g: [0, 1] \rightarrow G$ be the path such that $g(0) = e$ and $g(1) = t$. Then $g \circ f$ is the desired function in $C(X, G)$.

Remark 3. For every zero-dimensional space X, (X, G) is an S'-pair. We point out that, if B is a closed subset of X and (X, G) is an S-pair, then (B, G) is also an S-pair.

Definition 2 [9]. (1) A normal subgroup M of $C(X, G)$ is called an F-normal subgroup if $\{Z(f) : f \in M\}$ has the finite intersection property.

(2) A pair (X, G) of a topological space X and a topological group G is called a Q-pair if whenever M is an F-normal subgroup of $C(X, G)$ such that $C(X, G)/M$ is isomorphic to G by a c-isomorphism, then $\bigcap Z(M) \neq \emptyset$.

It is clear that if X is a completely regular space such that (X, R) is a Q-pair, then X is realcompact. As pointed out in [9], (X, G) is a Q-pair if X can be embedded into G as a subspace of G. Since every completely regular space X is a closed subspace of the free topological group $F(X)$ generated by X, and every topological group can be embedded as a closed subgroup of a path connected and locally path connected topological group [6], we see that for every completely regular space X there exists a path connected and locally path connected topological group G such that (X, G) is an S'_Q-pair. If X is compact, (X, R) is an S'_Q-pair.

If (X, G) is a Q-pair, then the only F-normal subgroups of $C(X, G)$ such that $C(X, G)/M$ is c-isomorphic to G are of the form M_p, $p \in X$ [9]. Thus we have the following:

Proposition 4. An S-pair (X, G) is a Q-pair if and only if every c-homomorphism h of $C(X, G)$ onto G with an F-normal subgroup as its kernel is of the form h_p for some $p \in X$.

Proof. For the necessity, let M be the kernel of h, then $C(X, G)/M$ is c-isomorphic to G. Hence there is $p \in \bigcap Z(M)$ such that $M = M_p$. Therefore $\ker h = \ker h_p$. Now for $f \in C(X, G)$, let $f(p) = c$, and let $g = fe^{-1}$, then $g \in M_p = M$. Hence

$$h(f) = h(gc) = h(g)h(c) = h(g)c = c = f(p) = h_p(f).$$

This shows that $h = h_p$.

For the sufficiency, suppose M is an F-normal subgroup of $C(X, G)$ such that $C(X, G)/M$ is c-isomorphic to G by the c-isomorphism k. Let $h = k \circ \alpha$, where α is the natural map of $C(X, G)$ onto $C(X, G)/M$. Then h...
is a c-homomorphism of $C(X, G)$ onto G with M as its kernel. Hence there is a unique $p \in X$ such that $h = h_p$, and thus $M = M_p$.

Following [7], we call a topological space X a V-space if for points p, q, x, y of X, where $p \neq q$, there exists a continuous function f of X into itself such that $f(p) = x$ and $f(q) = y$. It is shown in [7] that every completely regular path connected space and every zero-dimensional space is a V-space.

Recall that a topological space X is said to be an S-space if, for each pair of distinct points of X, there is a continuous real-valued function on X whose values at these points do not coincide. R. Arens defined it in [1], and has shown that, if the space $C(X, R)$ satisfies the first axiom of countability and X is an S-space, then X is hemicompact. Adopting the same line of argument, we have the following:

Theorem 5. If (X, G) is an S-pair, G is a V-space, and if $C(X, G)$ satisfies the first axiom of countability, then X is hemicompact and G is metrizable.

Proof. Since G can be embedded as a retract of $C(X, G)$, G is metrizable. For the hemicompactness of X, the proof is not different from that of [1, Theorem 8] and thus omitted.

It is remarked that, if $X = \bigcup_{n=1}^{\infty} C_n$ where $C_1 \subseteq C_2 \subseteq C_3, \ldots$, is hemicompact and if $\{V_n\}$ is a countable local base for e in G, then $\{(C_n, V_m)\}$ is a local base at I_0 in $C(X, G)$, and hence $C(X, G)$ is metrizable, where $(C_n, V_m) = \{f \in C(X, G) : f(C_n) \subseteq V_m\}$.

Lemma 6. Let (X, G) be an S-pair, and let Ω be an open covering for X. For each closed subset C of X contained in some member of Ω and for each open neighborhood U of e in G, let $(C, U) = \{f \in C(X, G) : f(C) \subseteq U\}$. Then the topology t for the group $C(X, G)$ having the family of sets of the form (C, U) as subbasic neighborhoods of I_0 is jointly continuous, that is, the map $P : X \times C(X, G) \to G$ defined by $P(f, x) = f(x)$ is continuous.

Proof. Let $f \in C(X, G)$, $x \in X$, and let W be a neighborhood of $f(x)$. Then $f(x)U \subseteq W$ for some open set U in G containing e, and hence $x \in f^{-1}(f(x)V) \cap O$, where $x \in O \in \Omega$ and V an open neighborhood of e such that $V^2 \subseteq U$. If C is a closed neighborhood of x such that $C \subseteq f^{-1}(f(x)V) \cap O$, then, for $g \in f(C, V)$ and $y \in C$, $g(y) \in f(y)V \subseteq f(x)U \subseteq W$. Hence P is continuous.

Theorem 7. Let (X, G) be an S-pair, where G is a V-space. If there exists a smallest jointly continuous topology t for the group $C(X, G)$, then X is locally compact.
Proof. The proof is similar to that of [1, Theorem 3]. Let \(a \) be an element of \(G \) different from \(e \), and let \(U \) be a neighborhood of \(e \) in \(G \) such that \(a \notin U \), and let \(x \in X \). By the joint continuity of \(t \), let \(V \) be a neighborhood of \(x \), and \(W \) a \(t \)-neighborhood of \(I_0 \) such that \(g(V) \subset U \) for every \(g \) in \(W \). We want to show that \(\mathcal{P} \) is compact.

Let \(\Omega \) be an open covering for \(\mathcal{P} \), and let \(\Omega' = \{X - \mathcal{P}\} \cup \Omega \). Then \(\Omega' \) is an open covering for \(X \). Let \(t' \) be the topology for \(C(X, G) \) induced by \(\Omega' \) as described in Lemma 6, then we have \(t \subset t' \). Hence there are closed sets \(C_i \subset O_i \) of \(X \) and open neighborhoods \(U_i \) of \(e \) in \(G \), \(i = 1, 2, \ldots, n \), such that \(W' = \bigcap_{i=1}^n (C_i, U_i) \) is contained in \(W \). Let \(O = V - \bigcup_{i=1}^n C_i \), and suppose that \(p \in O \). Then there is \(f \) in \(C(X, G) \) such that \(Z(f) \supset X - O \) and \(f(p) \neq e \). Let \(g \) be a continuous function of \(G \) into itself with \(g(e) = e \) and \(g(f(p)) = a \), and let \(g = g \circ f \). Then \(h(X - O) = e \) and \(h(p) = a \notin U \), hence \(h \in W' \). But \(p \) is in \(V \) and \(h(p) = a \notin U \); we have \(h \notin W \) which is impossible. Hence \(O = \emptyset \), and we have \(\mathcal{P} \subset \bigcup_{i=1}^n C_i \subset \bigcup_{i=1}^n O_i \). Therefore \(\mathcal{P} \) is compact.

Corollary. If \((X, G) \) is an S-pair, where \(G \) is a V-space, and \(X \times C(X, G) \) is a k-space, where \(C(X, G) \) has the compact-open topology, then \(X \) is locally compact.

Proof. If \(X \times C(X, G) \) is a k-space, then the compact-open topology for \(C(X, G) \) is jointly continuous [2]; hence \(X \) is locally compact.

The above corollary generalizes a result in [2]. As an application, we show in the following example that the product of two topological groups which are k-spaces need not be a k-space, a fact pointed out by N. Noble [8].

Example. Let \(X \) be the dual space of an infinite-dimensional Fréchet space with the compact-open topology. Then \(X \) is a topological group which is a hemicompact k-space but is not locally compact. If \(G \) is any metrizable topological group which is also a V-space such that \((X, G) \) is an S-pair, then \(C(X, G) \) is metrizable by the remark following Theorem 5. Since \(X \) is not locally compact, \(X \times C(X, G) \) is a topological group but is not a k-space as follows from the above corollary. This example was cited by N. Noble [8] for the case where \(G \) is the additive group of real numbers.

3. Isomorphic groups. This section is devoted to prove the following:

Theorem 8. Suppose that \((X, G) \) and \((Y, G) \) are SQ-pairs. If there exists an isomorphism between groups \(C(Y, G) \) and \(C(X, G) \) which maps every constant function on \(Y \) into the corresponding constant function on \(X \), then \(X \) and \(Y \) are homeomorphic.

All pairs \((Z, G) \) considered in this section are assumed to be SQ-pairs. Since every noncompact pseudocompact space \(X \) is not realcompact,
(X, R) cannot be a Q-pair, thus Theorem 8 is false if (X, G) is not a Q-pair.

In order to establish Theorem 8, we first prove that, if X is a k-space, X is homeomorphic to the space of all c-continuous homomorphisms of the topological group C(X, G) onto the topological group G with F-normal subgroups as kernels and endowed with the compact-open topology; let H(X, G) denote such a space of c-continuous homomorphisms. For each p ∈ X, the evaluation map h_p is in H(X, G), hence the correspondence p → h_p defines a map μ from X into H(X, G).

Theorem 9. If X is a k-space, the mapping μ is a homeomorphism of X onto H(X, G).

Proof. Proposition 4 implies that μ is onto.

If p ≠ q in X, there is f ∈ C(X, G) such that f(p) ≠ f(q), hence h_p(f) ≠ h_q(f). Thus μ is one-to-one.

The continuity of μ follows from Theorem 2 of [4], which states that if F is a family of continuous functions from a k-space X into a regular space Y endowed with the compact-open topology, then the mapping \(\theta : X \rightarrow C(F, Y) \) defined by \(\theta(x)(f) = f(x) \) is continuous, where \(C(F, Y) \) also has the compact-open topology.

It remains to show that μ is a closed map. Let C be a closed subset of X. Then μ(C) = \{ h_x : x ∈ C \}. Let \{ h_{x_n} \}_{n ∈ A} be a net in μ(C) such that h_{x_n} → h_x in H(X, G), where x_n ∈ C for each n ∈ A. If x ∉ C, then there exists an f in C(X, G) such that f(x) ∉ cl[f(C)]. But h_{x_n}(f) → h_x(f) in G; we have f(x_n) → f(x) in G, hence f(x) ∉ cl[f(C)], a contradiction. Hence x ∈ C and μ(C) is closed.

Remark 10. The hypothesis that X is a k-space in Theorem 9 is merely to assure the continuity of μ. In fact, if H(X, G) is given the point-open topology instead of the compact-open topology, the mapping μ is easily seen to be continuous without assuming that X is a k-space.

Suppose now that \(\theta : X \rightarrow Y \) is a continuous map of a k-space X into a k-space Y. Define \(\theta' : C(Y, G) \rightarrow C(X, G) \) by setting \(\theta'(g) = g \circ \theta \) for each g in C(Y, G) into the corresponding constant function in C(X, G). Note that if \(h_x \in H(X, G) \), then \(h_x \circ \theta' \) is in H(Y, G). Hence we have a continuous mapping \(\theta'' \) of H(X, G) onto H(Y, G) defined by \(\theta''(h_x) = h_x \circ \theta' \) for each \(h_x \in H(X, G) \). It is easy to verify that the following diagram

\[
\begin{array}{ccc}
X & \xrightarrow{\theta} & Y \\
\downarrow n_x & & \downarrow \mu_Y \\
H(X, G) & \xrightarrow{\theta''} & H(Y, G)
\end{array}
\]

is commutative, where \(\mu_Z : Z \rightarrow H(Z, G) \) is the mapping of Theorem 9.
Theorem 11. Suppose that X and Y are k-spaces. Every continuous homomorphism $h: C(Y, G) \rightarrow C(X, G)$ which maps every constant function on Y into the corresponding constant function on X, induces a unique continuous mapping j of X into Y such that $j' = h$. Furthermore, if h is a topological isomorphism, then the induced mapping j is a homeomorphism.

Proof. Let h' be the mapping of $H(X, G)$ into $H(Y, G)$ defined by $h'(h_x) = h_x\circ h$ for each $h_x \in H(X, G)$. Since X and Y are k-spaces, μ_X and μ_Y are homeomorphisms by Theorem 9. If we define $j: X \rightarrow Y$ by setting $j = \mu_Y^{-1} \circ h' \circ \mu_X$, then the above diagram shows that j is continuous. Note that $j(x) = y$ if and only if $h(g)(x) = g(y)$ for each $g \in C(Y, G)$. If $j': C(Y, G) \rightarrow C(X, G)$ is the mapping defined by $j'(g) = g \circ j$ for each $g \in C(Y, G)$, it is easy to verify that $j' = h$.

If $r: X \rightarrow Y$ is any continuous mapping such that $r(x) \neq j(x)$ for some $x \in X$, then there exists an $f \in C(X, G)$ such that $f(r(x)) \neq f(j(x))$. Hence $r' \neq j'$, and the uniqueness of j follows.

Now if h is a topological isomorphism, then j is onto and one-to-one (cf. [5, 10.2]), and j^{-1} is continuous. Hence j is a homeomorphism of X onto Y, and the proof is completed.

As one may notice from the above proof, the introduction of the mapping j depends solely on the homeomorphism of the maps μ_X and μ_Y, and, as noted in Remark 10, the mapping μ is always a homeomorphism if $H(X, G)$ is endowed with the point-open topology which indeed coincides with the compact-open topology if the domain space is discrete [3]. With this remark, we can now prove Theorem 8 very easily; take discrete topologies for the groups $C(Y, G)$ and $C(X, G)$ then apply the proof of Theorem 11.

Remark 12. In fact, if we define an S-pair (X, G) in a weaker form, (that is if we define (X, G) to be an S-pair if, for each closed subset C of X and $x \notin C$ there exists an $f \in C(X, G)$ such that $f(x) \notin \text{cl}([f(C)])$, then most of the results stated above, except perhaps Theorems 5 and 7, hold.

References

Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208