On isomorphic groups and homeomorphic spaces
HTML articles powered by AMS MathViewer
- by J. S. Yang
- Proc. Amer. Math. Soc. 43 (1974), 431-438
- DOI: https://doi.org/10.1090/S0002-9939-1974-0339060-X
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 48 (1975), 517.
Abstract:
Let $C(X,G)$ denote the group of continuous functions from a topological space $X$ into a topological group $G$ with the pointwise multiplication. Some classes of SQ-pairs and properties of the corresponding topological group $C(X,G)$ with the compact-open topology are investigated. We also show that the existence of a group isomorphism between groups $C(X,G)$ and $C(Y,G)$ implies the existence of a homeomorphism between $X$ and $Y$, if $(X,G)$ and $(Y,G)$ are SQ-pairs.References
- Richard F. Arens, A topology for spaces of transformations, Ann. of Math. (2) 47 (1946), 480–495. MR 17525, DOI 10.2307/1969087
- R. W. Bagley and J. S. Yang, On $k$-spaces and function spaces, Proc. Amer. Math. Soc. 17 (1966), 703–705. MR 192468, DOI 10.1090/S0002-9939-1966-0192468-3
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- David Gale, Compact sets of functions and function rings, Proc. Amer. Math. Soc. 1 (1950), 303–308. MR 36503, DOI 10.1090/S0002-9939-1950-0036503-X
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
- S. Hartman and Jan Mycielski, On the imbedding of topological groups into connected topological groups, Colloq. Math. 5 (1958), 167–169. MR 100044, DOI 10.4064/cm-5-2-167-169
- Kenneth D. Magill Jr., Some homomorphism theorems for a class of semigroups, Proc. London Math. Soc. (3) 15 (1965), 517–526. MR 185029, DOI 10.1112/plms/s3-15.1.517 N. L. Noble, $k$-spaces and some generalizations, Doctoral Dissertation, University of Rochester, Rochester, N.Y., 1967.
- J. S. Yang, Transformation groups of automorphisms of $C(X,\,G)$, Proc. Amer. Math. Soc. 39 (1973), 619–624. MR 317308, DOI 10.1090/S0002-9939-1973-0317308-4
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 431-438
- MSC: Primary 54C35; Secondary 22A05
- DOI: https://doi.org/10.1090/S0002-9939-1974-0339060-X
- MathSciNet review: 0339060