Immersion in the metastable range and $2$-localization
HTML articles powered by AMS MathViewer
- by Henry H. Glover and Guido Mislin
- Proc. Amer. Math. Soc. 43 (1974), 443-448
- DOI: https://doi.org/10.1090/S0002-9939-1974-0341504-4
- PDF | Request permission
Abstract:
Our purpose is to study immersion properties in the metastable range using the techniques of localization of homotopy types. The main theorem states that immersion of a manifold $M$ in euclidean space in the metastable range depends only upon the homotopy type ${M_2}$, the localization of $M$ at the prime 2.References
- M. F. Atiyah, Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291–310. MR 131880, DOI 10.1112/plms/s3-11.1.291
- André Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv. 36 (1961), 47–82 (French). MR 145538, DOI 10.1007/BF02566892
- Peter Hilton, Guido Mislin, and Joseph Roitberg, Homotopical localization, Proc. London Math. Soc. (3) 26 (1973), 693–706. MR 326720, DOI 10.1112/plms/s3-26.4.693
- Morris W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242–276. MR 119214, DOI 10.1090/S0002-9947-1959-0119214-4
- I. M. James, On the iterated suspension, Quart. J. Math. Oxford Ser. (2) 5 (1954), 1–10. MR 61836, DOI 10.1093/qmath/5.1.1
- Denis Sjerve, Geometric dimension of vector bundles over lens spaces, Trans. Amer. Math. Soc. 134 (1968), 545–557. MR 233373, DOI 10.1090/S0002-9947-1968-0233373-X
- Michael Spivak, Spaces satisfying Poincaré duality, Topology 6 (1967), 77–101. MR 214071, DOI 10.1016/0040-9383(67)90016-X
- Dennis Sullivan, Geometric topology. Part I, Massachusetts Institute of Technology, Cambridge, Mass., 1971. Localization, periodicity, and Galois symmetry; Revised version. MR 0494074
- W. A. Sutherland, Fibre homotopy equivalence and vector fields, Proc. London Math. Soc. (3) 15 (1965), 543–556. MR 176491, DOI 10.1112/plms/s3-15.1.543
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 443-448
- MSC: Primary 57D40
- DOI: https://doi.org/10.1090/S0002-9939-1974-0341504-4
- MathSciNet review: 0341504