SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

0-DIVISORS IN GROUP RINGS

I. SINHA

Abstract. If \(G \) is any group with two finite subgroups \(H, K, K \leq G, (|H|, |K|)=1 \), then \(RG \) has no \(0 \)-divisors congruent to \(1 \) modulo the augmentation ideal.

Let \(R \) be a commutative unitary ring of characteristic 0, and \(\mathcal{G} \) denote the augmentation ideal \(\mathcal{A}(G) \) of the group ring \(RG \) for a group \(G \). If \(G \) is finite and not of prime-power order then, as J. Roseblade and R. Phillips have recently proved (unpublished), \(RG \) contains a \(0 \)-divisor congruent to 1 modulo \(\mathcal{G} \). Their proof depends heavily on properties of Schmidt groups. We give here a simple proof generalizing this result to the infinite case. For \(T \leq G \), let \(\mathcal{A}(T) \) be the left ideal in \(RT \), generated by \(\{t-1|t \in T\} \).

Theorem. Let \(G \) be a group containing two finite subgroups \(H \) and \(K \) where \(H \leq N_G(K) \) and \((|H|, |K|)=1 \). Then \(\mathcal{A}(K) \cdot \mathcal{A}(H) \cdot x = 0 \) for some \(x \equiv 1 \mod \mathcal{G} \) in \(RG \).

Proof. Let \(y = \sum_{h \in H} h, z = \sum_{k \in K} k, |H| = m, |K| = n, \) where \((m, n)=1 \). Then \(k \in K \Rightarrow (k-1)z = 0 \), and similarly \(h \in H \Rightarrow (h-1)y = 0 \). Since \((m, n)=1 \), there exist \(r, s \) in \(\mathbb{Z} \) (and hence in \(R \)) such that \(rm + sn = 1 \). Put \(x = ry + sz \). If \(\rho : RG \rightarrow R \) is the augmentation map, then \(\rho(x) = r \rho(y) + s \rho(z) = rm + sn = 1 \), so that \(x \equiv 1 \mod \mathcal{G} \), since \(\mathcal{G} = \text{kernel } \rho \). Also

\[
\mathcal{A}(K) \cdot \mathcal{A}(H) \cdot x = r \cdot \mathcal{A}(K) \cdot \mathcal{A}(H)y + s \cdot \mathcal{A}(K) \cdot \mathcal{A}(H)z
\]

\[
= 0 + s \cdot \mathcal{A}(K) \cdot \mathcal{A}(H) \cdot z, \quad \text{since } \mathcal{A}(H)y = 0,
\]

\[
= s \cdot \mathcal{A}(K) \cdot z \cdot \mathcal{A}(H), \quad \text{since } H \leq N_G(K),
\]

\[
= 0, \quad \text{since } \mathcal{A}(K) \cdot z = 0.
\]

This proves the result. Q.E.D.

Since the existence of such \(0 \)-divisors easily implies that the intersection of all powers of the augmentation ideal is not 0, we have:

Received by the editors June 8, 1973.

© American Mathematical Society 1974

476
Corollary. If G has a finite subgroup which is not of prime-power order then $\bigcap_\alpha G^\alpha \neq 0$.

Proof. We may suppose that G is finite and not of prime-power order. It suffices to show that G has subgroups $H, K \neq 1$ of relatively prime order with $H \leq N_G(K)$.

Let P be a p-Sylow subgroup of G. If G has a normal p-complement K, take $P = H$. If not, there exists a subgroup $K \neq 1$ in P, such that $N_G(P)/C_G(P)$ is not a p-group. Take H to be a q-subgroup of $N_G(K)$ for some $q \neq p$.

With these subgroups H and K, we can now apply the Theorem and the comment above to complete the proof of the Corollary. Q.E.D.

Department of Mathematics, Michigan State University, East Lansing, Michigan 48823