Syzygies in $[y^{p}z]$
HTML articles powered by AMS MathViewer
- by D. G. Mead and M. E. Newton
- Proc. Amer. Math. Soc. 43 (1974), 301-305
- DOI: https://doi.org/10.1090/S0002-9939-1974-0371869-9
- PDF | Request permission
Abstract:
For every $[{y^p}z]$ we obtain an infinite sequence of syzygies as well as the coefficients of some of the terms in the derivatives of these syzygies.References
- Howard Levi, On the structure of differential polynomials and on their theory of ideals, Trans. Amer. Math. Soc. 51 (1942), 532–568. MR 6163, DOI 10.1090/S0002-9947-1942-0006163-2
- M. E. Newton, The differential ideals $[y^{p}z]$, Proc. Amer. Math. Soc. 30 (1971), 229–234. MR 285515, DOI 10.1090/S0002-9939-1971-0285515-3
- Joseph Fels Ritt, Differential Algebra, American Mathematical Society Colloquium Publications, Vol. XXXIII, American Mathematical Society, New York, N. Y., 1950. MR 0035763, DOI 10.1090/coll/033
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 301-305
- MSC: Primary 12H05
- DOI: https://doi.org/10.1090/S0002-9939-1974-0371869-9
- MathSciNet review: 0371869