Simple knots without unique minimal surfaces
HTML articles powered by AMS MathViewer
- by Herbert C. Lyon
- Proc. Amer. Math. Soc. 43 (1974), 449-454
- DOI: https://doi.org/10.1090/S0002-9939-1974-0377850-8
- PDF | Request permission
Abstract:
We construct infinitely many simple knots and infinitely many nonsimple knots, all of genus one, and all having both knotted and unknotted minimal spanning surfaces. The complements of the simple knots all contain closed incompressible surfaces of genus two.References
- W. R. Alford, Complements of minimal spanning surfaces of knots are not unique, Ann. of Math. (2) 91 (1970), 419–424 (French). MR 253312, DOI 10.2307/1970584
- W. R. Alford and C. B. Schaufele, Complements of minimal spanning surfaces of knots are not unique. II. , Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969) Markham, Chicago, Ill., 1970, pp. pp 87–96. MR 0288751
- R. J. Daigle, Complements of minimal surfaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 1021–1025 (English, with Russian summary). MR 375283
- R. J. Daigle, More on complements of minimal spanning surfaces, Rocky Mountain J. Math. 3 (1973), 473–482. MR 367968, DOI 10.1216/RMJ-1973-3-3-473
- R. H. Fox, A quick trip through knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 120–167. MR 0140099
- Herbert C. Lyon, Incompressible surfaces in knot spaces, Trans. Amer. Math. Soc. 157 (1971), 53–62. MR 275412, DOI 10.1090/S0002-9947-1971-0275412-6
- Herbert C. Lyon, Incompressible surfaces in knot spaces, Trans. Amer. Math. Soc. 157 (1971), 53–62. MR 275412, DOI 10.1090/S0002-9947-1971-0275412-6
- Horst Schubert, Knoten und Vollringe, Acta Math. 90 (1953), 131–286 (German). MR 72482, DOI 10.1007/BF02392437
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 43 (1974), 449-454
- MSC: Primary 55A25
- DOI: https://doi.org/10.1090/S0002-9939-1974-0377850-8
- MathSciNet review: 0377850