Homotopy groups of the isotropy groups of annulus
HTML articles powered by AMS MathViewer
- by Jong P. Lee
- Proc. Amer. Math. Soc. 44 (1974), 213-217
- DOI: https://doi.org/10.1090/S0002-9939-1974-0328965-1
- PDF | Request permission
Abstract:
We compute the isotopy groups of various subspaces of the isotropy group at an interior point of an annulus. We also prove that if $a$ and $x$ are interior points of a disk $D$, then ${\pi _0}[H(D - a,x)] = {Z_2}$ and ${\pi _n}[H(D - a,x)] = 0$ for $n \geqq 1$ where $H(D - a,x)$ is the isotropy group at $x$.References
- J. W. Alexander, On the deformation of an $n$-cell, Proc. Nat. Acad. Sci. U.S.A. 9 (1923), 406-407.
- D. B. A. Epstein, Curves on $2$-manifolds and isotopies, Acta Math. 115 (1966), 83–107. MR 214087, DOI 10.1007/BF02392203
- Herman Gluck, The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962), 308–333. MR 146807, DOI 10.1090/S0002-9947-1962-0146807-0
- Mary-Elizabeth Hamstrom and Eldon Dyer, Regular mappings and the space of homeomorphisms on a 2-manifold, Duke Math. J. 25 (1958), 521–531. MR 96202
- G. S. McCarty Jr., Homeotopy groups, Trans. Amer. Math. Soc. 106 (1963), 293–304. MR 145531, DOI 10.1090/S0002-9947-1963-0145531-9 L. V. Quintas, Solved and unsolved problems in the computation of homeotopy groups of $2$-manifolds, Trans. New York Acad. Sci. 30 (1968), 919-938.
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 44 (1974), 213-217
- MSC: Primary 57E05; Secondary 55E05
- DOI: https://doi.org/10.1090/S0002-9939-1974-0328965-1
- MathSciNet review: 0328965