Parallel Vector Fields and Periodic Orbits

SOL SCHWARTZMAN

Abstract. Let \(V \) be a parallel vector field on a compact Riemannian manifold without boundary. Suppose the Euler class over the reals of the normal bundle to \(V \) is different from zero. Then the flow defined by \(V \) has a periodic orbit.

Let \(M^n \) be a \(C^\infty \) compact oriented \(n \)-dimensional Riemannian manifold, and let \(V \) be a nowhere vanishing \(C^\infty \) contravariant vector field on \(M^n \) that is parallel with respect to the metric; that is, we assume that the covariant derivative of \(V \) is zero. Let \(\mu \in H^{n-1}(M^n, R) \) be the Euler class of the normal bundle to \(V \) with real coefficients, where we put the obvious orientation on the normal bundle. The purpose of the note is to prove the following result:

Theorem. If \(\mu \neq 0 \), the flow defined by \(V \) has a periodic orbit.

Proof. We proceed by adopting a device used in [2]. The one-form \(\alpha \) gotten from \(V \) by lowering indices has covariant derivative zero and therefore has exterior derivative zero, since the exterior derivative is the skew-symmetrization of the covariant derivative. Moreover the interior product of \(\alpha \) and \(V \) is certainly never zero. Let \(\alpha_1, \cdots, \alpha_k \) be closed one-forms on \(M^n \) corresponding to a basis for the one-dimensional cohomology on \(M^n \). For some \(\delta > 0 \), \(|\varepsilon_1| + \cdots + |\varepsilon_k| < \delta \) implies that \(\alpha + \varepsilon_1 \alpha_1 + \cdots + \varepsilon_k \alpha_k \) has a nowhere vanishing interior product with \(V \). We see from this that we can get \(C^\infty \) one-forms \(\omega_1, \cdots, \omega_k \) each of which has a nonvanishing interior product with \(V \) and which correspond to a basis of the rational one-dimensional cohomology of \(M^n \). Then by multiplying \(\omega_1, \cdots, \omega_k \) by suitable rational constants we can get one-forms \(\omega'_1, \cdots, \omega'_k \) each of which has a nowhere vanishing interior product with \(V \) and which correspond to a basis of \(H'(M^n, R) \) arising from the integral one-dimensional cohomology of \(M^n \). Each of the one-forms \(\omega'_1, \cdots, \omega'_k \) arises from a map to the circle; in an easily understood notation there exist functions \(\theta_1, \cdots, \theta_k \) on \(M^n \) defined mod 1 such that \(\omega'_1 = d\theta_1, \cdots, \omega'_k = d\theta_k \).

Next we observe that if \(N_1, \cdots, N_k \) are the \((n-1)\)-dimensional manifolds corresponding to the equations \(\theta_1 = 0, \cdots, \theta_k = 0 \) and taken with...
the obvious orientation the fundamental class of N_i yields by injection
the element of $H_{n-1}(M^n, R)$ which corresponds by Poincaré duality to
the cohomology class determined by ω_i. This can be seen, for example,
by noticing that for any closed $(n-1)$-form λ, $\int_{M^n} \lambda \wedge d\theta_i = \int_{N_i} \lambda$, which
follows by using the local product structure on M^n as a bundle over the
circle and noting that the integral of λ is the same over each fibre for any
one of our fibrations θ_i.

Since the Euler class μ of the normal bundle to the vector field V is
assumed different from zero, there is an i_0 such that the cap product of μ
with the injection of the fundamental class of N_{i_0} into the homology of
M^n is different from zero. Then the pullback of μ to the cohomology of
N_{i_0} is different from zero. This pullback is, however, just the Euler class
of the oriented tangent bundle to N_{i_0}; thus the Euler characteristic of
N_{i_0} is different from zero.

However N_{i_0} is clearly a global cross-section to the flow determined by
the vector field V. If h is the homeomorphism of N_{i_0} onto itself deter-
mined by the flow we can conclude by a theorem of Fuller, since the Euler
characteristic of N_{i_0} is different from zero, that there exists a point on N_{i_0}
periodic under h. Then the orbit of this point under the flow defined by
V must be periodic.

(Note. After this paper was submitted, two related papers came to the
author's attention. In [2] Conley introduced the notion of a flow which
carries a one-form. A flow defined by a parallel vector field on a Rieman-
nian manifold carries a closed one-form. Moreover if the Euler class over
the reals of the normal bundle to a vector field V on a compact orientable
manifold is different from zero, and if the flow defined by V carries a
closed one-form, our argument can be carried over to prove that there
is a periodic orbit. In [1], which appeared after the present paper was
accepted for publication, Churchill shows that a flow which carries a
closed one-form has a cross-section.)

BIBLIOGRAPHY

1. Richard C. Churchill, Invariant sets which carry cohomology, J. Differential

2. C. Conley, Invariant sets which carry a one form, J. Differential Equations 8

3. F. Brock Fuller, The existence of periodic points, Ann. of Math. (2) 57 (1953),

4. D. Tischler, On fibering certain foliated manifolds over S^1, Topology 9 (1970),
153–154. MR 41 #1069.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF RHODE ISLAND, KINGSTON, RHODE
ISLAND 02881

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use