On $\Delta (x, n)=\phi (x, n)$ $-x\phi (n)/n$
HTML articles powered by AMS MathViewer
- by D. Suryanarayana
- Proc. Amer. Math. Soc. 44 (1974), 17-21
- DOI: https://doi.org/10.1090/S0002-9939-1974-0332636-5
- PDF | Request permission
Abstract:
Let $\Delta (x,n) = \varphi (x,n) - x\varphi (n)/n$, where $\varphi (x,n)$ denotes the number of positive integers $\leqq x$ and prime to $n,\varphi (n) = \varphi (n,n)$. In this paper, lower and upper bounds for $\Delta (x,n)$, which hold for all values of $x \geqq 1$ and $n \geqq 2$, are established.References
- Eckford Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math. Z. 74 (1960), 66–80. MR 112861, DOI 10.1007/BF01180473
- Eckford Cohen, A property of Dedekind’s $\psi$-function, Proc. Amer. Math. Soc. 12 (1961), 996. MR 132717, DOI 10.1090/S0002-9939-1961-0132717-6 L. E. Dickson, History of the theory of numbers. Vol. I, Chelsea, New York, 1952.
- Paul Erdös, On the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc. 52 (1946), 179–184. MR 14110, DOI 10.1090/S0002-9904-1946-08538-9
- P. Erdös, On a problem in elementary number theory, Math. Student 17 (1949), 32–33 (1950). MR 34785 G. H. Hardy and E. M. Wright, An Introduction to the theory of numbers, 4th ed., Oxford Univ. Press, London, 1960.
- D. H. Lehmer, A conjecture of Krishnaswami, Bull. Amer. Math. Soc. 54 (1948), 1185–1190. MR 28333, DOI 10.1090/S0002-9904-1948-09147-9
- Trygve Nagell, Introduction to Number Theory, John Wiley & Sons, Inc., New York; Almqvist & Wiksell, Stockholm, 1951. MR 0043111
- T. Vijayaraghavan, On a problem in elementary number theory, J. Indian Math. Soc. (N.S.) 15 (1951), 51–56. MR 43837
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 44 (1974), 17-21
- MSC: Primary 10A20
- DOI: https://doi.org/10.1090/S0002-9939-1974-0332636-5
- MathSciNet review: 0332636