SUMS OF QUOTIENTS OF ADDITIVE FUNCTIONS

JEAN-MARIE DE KONINCK

Abstract. Denote by \(\omega(n) \) and \(\Omega(n) \) the number of distinct prime factors of \(n \) and the total number of prime factors of \(n \), respectively. Given any positive integer \(\alpha \), we prove that

\[
\sum_{2 \leq n \leq x} \frac{\Omega(n)}{\omega(n)} = x + x \sum_{i=1}^{\alpha} a_i (\log \log x)^i + O(x/(\log \log x)^{\alpha+1}),
\]

where \(a_1 = \sum_p 1/p(p-1) \) and all the other \(a_i \)'s are computable constants. This improves a previous result of R. L. Duncan.

Denote by \(\omega(n) \) and \(\Omega(n) \) the number of distinct prime factors of \(n \) and the total number of prime factors of \(n \), respectively. R. L. Duncan [3] proved that

\[
\sum_{2 \leq n \leq x} \frac{\Omega(n)}{\omega(n)} = x + O(x/\log \log x).
\]

Duncan's result was based on the elementary estimate

\[
\sum_{2 \leq n \leq x} 1/\omega(n) = O(x/\log \log x).
\]

In a previous paper [1], we gave estimates of \(\sum_{n \leq x} 1/f(n) \) for a large class of additive functions \(f(n) \) (where \(\sum' \) denotes summation over those values of \(n \) for which \(f(n) \neq 0 \)), which in particular improved considerably the estimate (1). Such sums were further studied by De Koninck and Galambos [2].

In this paper, we prove the following:

Theorem. Let \(\alpha \) be an arbitrary positive integer; then

\[
\sum_{n \leq x} \frac{\Omega(n)}{\omega(n)} = x + x \sum_{i=1}^{\alpha} a_i (\log \log x)^i + O(x/(\log \log x)^{\alpha+1}),
\]

where \(a_1 = \sum_p 1/p(p-1) \) and all the other \(a_i \)'s are computable constants.
PROOF. Let \(t \) and \(u \) be real numbers satisfying \(|t| \leq 1, |u| \leq 1 \). Then, for \(\text{Re } s > 1 \), we have

\[
\sum_{n=1}^{\infty} \frac{\prod_{n}^{\infty} \left(1 + \frac{tu}{p^n} + \frac{t^2u}{p^{2n}} + \frac{t^3u}{p^{3n}} + \cdots \right)}{n^s} = (\zeta(s))^u \prod_{p} \left(1 - \frac{1}{p^s} \right) \prod_{p} \left(1 + \frac{tu}{p^s} + \frac{t^2u}{p^{2s}} + \frac{t^3u}{p^{3s}} + \cdots \right)
\]

\[
= (\zeta(s))^u H(t, u; s),
\]

say (Here \(\zeta(s) \) denotes the Riemann zeta-function.)

Using a theorem of A. Selberg [5], as we did previously in [1], we obtain that

\[
\sum_{n \leq x} \prod_{n}^{\infty} \left(1 + \frac{tu}{p^n} + \frac{t^2u}{p^{2n}} + \frac{t^3u}{p^{3n}} + \cdots \right) = \frac{H(t, u; 1)}{\Gamma(tu)} x \log^{tu-1} x + O(x \log^{tu-2} x),
\]

uniformly for \(|t| \leq 1, |u| \leq 1 \), which certainly implies that

\[
\sum_{n \leq x} \prod_{n}^{\infty} \left(1 + \frac{tu}{p^n} + \frac{t^2u}{p^{2n}} + \frac{t^3u}{p^{3n}} + \cdots \right) = \frac{H(t, u; 1)}{\Gamma(tu)} x \log^{tu} x + O(1),
\]

uniformly for \(|t| \leq 1, |u| \leq 1 \).

Now differentiating both sides of (2) with respect to \(t \) gives

\[
\sum_{n \leq x} \Omega(n) \prod_{n}^{\infty} \left(1 + \frac{tu}{p^n} + \frac{t^2u}{p^{2n}} + \frac{t^3u}{p^{3n}} + \cdots \right) = \frac{x}{\log x} \left(\log^{tu} x \frac{d}{dt} \left(\frac{H(t, u; 1)}{\Gamma(tu)} \right) \right)
\]

\[
+ \frac{H(t, u; 1)}{\Gamma(tu)} \cdot \log^{tu} x \cdot \log \log x \cdot u + O(1),
\]

which, by setting \(t = 1 \) and dividing both sides by \(u \), becomes

\[
\sum_{n \leq x} \Omega(n) \prod_{n}^{\infty} \left(1 + \frac{tu}{p^n} + \frac{t^2u}{p^{2n}} + \frac{t^3u}{p^{3n}} + \cdots \right) = (x/\log x) \{ G(u) \log^{u} x + F(u) \log^{u} x \cdot \log \log x + O(1/u) \}
\]

uniformly for \(|u| \leq 1 \), where

\[
G(u) = \frac{1}{u} \left. \frac{d}{dt} \left(\frac{H(t, u; 1)}{\Gamma(tu)} \right) \right|_{t=1}
\]

and

\[
F(u) = \frac{H(1, u; 1)}{\Gamma(u)}
\]
We now proceed to integrate both sides of (3) with respect to u between $e(x) = (\log x)^{1/2}$ and 1 ($x \geq 3$). First we have

\[
\int_{e(x)}^{1} \left(\sum_{2 \leq n \leq x} \Omega(n) u^{\omega(n)-1} \right) du = \sum_{2 \leq n \leq x} \Omega(n) \int_{e(x)}^{1} u^{\omega(n)-1} du
\]

\[
= \sum_{n \leq x} \frac{\Omega(n)}{\omega(n)} - \sum_{n \leq x} \frac{\Omega(n)}{\omega(n)} (e(x))^{\omega(n)}
\]

\[
= \sum_{n \leq x} \frac{\Omega(n)}{\omega(n)} + O\left((e(x) \sum_{2 \leq n \leq x} \Omega(n)) \right),
\]

since $\omega(n) \geq 1$ for $n \geq 2$. It can be proved [4] in an elementary way that $\sum_{2 \leq n \leq x} \Omega(n) = O(x \log \log x)$. Therefore,

\[
\int_{e(x)}^{1} \left(\sum_{2 \leq n \leq x} \Omega(n) u^{\omega(n)-1} \right) du = \sum_{n \leq x} \frac{\Omega(n)}{\omega(n)} + O(x(\log \log x)(\log x)^{-1/2})
\]

(4)

\[
= \sum_{n \leq x} \frac{\Omega(n)}{\omega(n)} + O\left(\frac{x}{(\log \log x)^{x+1}} \right).
\]

On the other hand, as in [1], repeated integration by parts yields

\[
\int_{e(x)}^{1} G(u) \log^{u} x du
\]

\[
= \log x \left(\frac{G(1)}{\log \log x} - \frac{G'(1)}{(\log \log x)^{2}} + \frac{G''(1)}{(\log \log x)^{3}} - \cdots \right.
\]

\[
\left. + \frac{(-1)^{x-1} G((x-1)(1))}{(\log \log x)^{x}} + O\left(\frac{1}{(\log \log x)^{x+1}} \right) \right)
\]

(5)

\[
\left. + \frac{(-1)^{x+1}}{(\log \log x)^{x+1}} \int_{e(x)}^{1} G^{(x+1)}(u) \log^{u} x du \right)
\]

\[
= \log x \left(\frac{G(1)}{\log \log x} - \frac{G'(1)}{(\log \log x)^{2}} + \cdots \right.
\]

\[
\left. + \frac{(-1)^{x-1} G((x-1)(1))}{(\log \log x)^{x}} + O\left(\frac{1}{(\log \log x)^{x+1}} \right) \right).
\]

Similarly we obtain

\[
\log \log x \int_{e(x)}^{1} F(u) \log^{u} x du
\]

(6)

\[
= \log x \left(F(1) - \frac{F'(1)}{\log \log x} + \frac{F'(1)}{(\log \log x)^{2}} - \cdots \right.
\]

\[
\left. + \frac{(-1)^{x} F((x)(1))}{(\log \log x)^{x}} + O\left(\frac{1}{(\log \log x)^{x+1}} \right) \right).
\]
Finally,
\[
\frac{x}{\log x} \int_{\epsilon(x)}^{1} \frac{du}{u} = O\left(\frac{x \log \epsilon(x)}{\log x}\right) = O\left(\frac{x \log \log x}{\log x}\right)
\]
(7)
\[
= O\left(\frac{1}{(\log \log x)^{a+1}}\right)
\]

Putting together relations (3), (4), (5), (6) and (7), we have that
\[
\sum_{n \leq x} \frac{\Omega(n)}{\omega(n)} = x\left(F(1) + \frac{G(1) - F'(1)}{\log \log x} - \frac{G'(1) - F''(1)}{(\log \log x)^2} + \cdots + (-1)^{a-1} \frac{G^{(a-1)}(1) - F^{(a)}(1)}{(\log \log x)^a} + O\left(\frac{1}{(\log \log x)^{a+1}}\right)\right)
\]

A quite simple computation shows that \(F(1)=1\) and that \(G(1) - F'(1) = \sum_p 1/p(p-1)\), which proves our Theorem.

From the above reasoning it is clear that similar estimates of \(\sum_{n \leq x} g(n)f(n)\) could be obtained for a larger class of additive functions \(f\) and \(g\) along the lines of our previous paper [1].

REFERENCES

Département de Mathématiques, Université Laval, G1K 7P4, Québec, Canada