Sums of quotients of additive functions
HTML articles powered by AMS MathViewer
- by Jean-Marie De Koninck
- Proc. Amer. Math. Soc. 44 (1974), 35-38
- DOI: https://doi.org/10.1090/S0002-9939-1974-0332683-3
- PDF | Request permission
Abstract:
Denote by $\omega (n)$ and $\Omega (n)$ the number of distinct prime factors of $n$ and the total number of prime factors of $n$, respectively. Given any positive integer $\alpha$, we prove that \[ \sum \limits _{2 \leqq n \leqq x} {\Omega (n)/\omega } (n) = x + x\sum \limits _{i = 1}^\alpha {{a_i}/{{(\log \log x)}^i} + O{{(x/\log \log x)}^{\alpha + 1}}),} \] where ${a_1} = \sum \nolimits _p {1/p(p - 1)}$ and all the other ${a_i}$’s are computable constants. This improves a previous result of R. L. Duncan.References
- Jean-Marie De Koninck, On a class of arithmetical functions, Duke Math. J. 39 (1972), 807–818. MR 311598
- Jean-Marie De Koninck and Jànos Galambos, Sums of reciprocals of additive functions, Acta Arith. 25 (1973/74), 159–164. MR 354598, DOI 10.4064/aa-25-2-159-164
- R. L. Duncan, On the factorization of integrers, Proc. Amer. Math. Soc. 25 (1970), 191–192. MR 252311, DOI 10.1090/S0002-9939-1970-0252311-1 G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford Univ. Press, London, 1968.
- Atle Selberg, Note on a paper by L. G. Sathe, J. Indian Math. Soc. (N.S.) 18 (1954), 83–87. MR 67143
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 44 (1974), 35-38
- MSC: Primary 10H25
- DOI: https://doi.org/10.1090/S0002-9939-1974-0332683-3
- MathSciNet review: 0332683