Clifford translations of symmetric spaces
HTML articles powered by AMS MathViewer
- by V. Ozols
- Proc. Amer. Math. Soc. 44 (1974), 169-175
- DOI: https://doi.org/10.1090/S0002-9939-1974-0334093-1
- PDF | Request permission
Abstract:
A direct proof, not using the classification of symmetric spaces, is given for the following characterization of Clifford translations in a symmetric space $M$: An isometry $g$ is a Clifford translation of $M$ if and only if the centralizer $Z(g)$ of $g$ in the isometry group of $M$ is transitive on $M$. The proof uses a geodesic characterization of Clifford translations, and the subgroups ${T^{(h)}}$ of J. de Siebenthal.References
- Hans Freudenthal, Clifford-Wolf-Isometrien symmetrischer Räume, Math. Ann. 150 (1963), 136–149 (German). MR 150701, DOI 10.1007/BF01470840
- Vilnis Ozols, Critical points of the displacement function of an isometry, J. Differential Geometry 3 (1969), 411–432. MR 266101
- Graeme Segal, The representation ring of a compact Lie group, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 113–128. MR 248277
- Jean de Siebenthal, Sur les groupes de Lie compacts non connexes, Comment. Math. Helv. 31 (1956), 41–89 (French). MR 94408, DOI 10.1007/BF02564352
- Georges Vincent, Les groupes linéaires finis sans points fixes, Comment. Math. Helv. 20 (1947), 117–171 (French). MR 21936, DOI 10.1007/BF02568125
- Joseph A. Wolf, Vincent’s conjecture on Clifford translations of the sphere, Comment. Math. Helv. 36 (1961), 33–41. MR 137076, DOI 10.1007/BF02566890
- Joseph A. Wolf, Locally symmetric homogeneous spaces, Comment. Math. Helv. 37 (1962/63), 65–101. MR 148012, DOI 10.1007/BF02566963 —, Spaces of constant curvature, 2nd ed., 1972.
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 44 (1974), 169-175
- MSC: Primary 53C35
- DOI: https://doi.org/10.1090/S0002-9939-1974-0334093-1
- MathSciNet review: 0334093