ON A MULTIPLICATION DECOMPOSITION THEOREM
IN A DEDEKIND σ-COMPLETE PARTIALLY
ORDERED LINEAR ALGEBRA

TAEN-YU DAI

Abstract. Suppose a Dedekind σ-complete partially ordered linear algebra (dsc-pola) satisfies a certain multiplication decomposition property (see definition below), then we show that this partially ordered linear algebra actually has the same structure of a special class of real matrix algebras, consisting of elements that can be decomposed as diagonal part plus nilpotent part w, such that $w^2 = 0$.

A dsc-pola, denoted by A (or B) is a real linear associative algebra which satisfies the following two conditions: (1) It is partially ordered so that it is a directed partially ordered linear space and $0 \leq xy$ whenever $x, y \in A$, $0 \leq x, 0 \leq y$. (2) It is Dedekind σ-complete, i.e., if $x_n \in A$, $0 \leq \cdots \leq x_0 \leq x_1$, then $\inf\{x_n\}$ exists. A dsc-pola A has the Archimedean property: If $x, y \in A$ and $nx \leq y$ for every positive integer n, then $x \leq 0$. In this paper we will assume A has a multiplicative identity 1^A. Let $I = \{y : y^2 = 1, \text{ and } y^1 = 0\} \subset A$. Define $A_1 = \bigcup_{y \in I} \{x : -y \leq x \leq y\}$. Then it was shown by R. DeMarr that the multiplication of the elements in A_1 is commutative, and A_1 behaves much like an algebra of real-valued functions; moreover, A_1 is a lattice and has no nonzero nilpotent. For the details of the proofs and examples of A_1 we refer to [2]. (Note in [2], instead of the term dsc-pola, we use polac; actually they have the same meaning.) We will call A_1 the functional or diagonal part of A. Let A be a dsc-pola which has the following multiplication decomposition property (abbreviated as MD):

MD property: If $y_1, y_2 \in A$, $0 \leq y_1, 0 \leq y_2$, $0 \leq u \leq y_1 y_2$, then there exists $u_i \in A$, $0 \leq u_i \leq y_i (i = 1, 2)$ such that $u = u_1 u_2$.

It was shown as Theorem 4 in [4] that if A is commutative and has the MD property, then $A = A_1$. In this paper we will drop the commutativity assumption and show the following theorem:

Main Theorem. If a dsc-pola A has the MD property, then for each $x \in A$, $x = d + v$, where $d \in A_1$, $v^2 = 0$, and this expression is unique (in the sense that if $x = d + v = e + u$, $e \in A_1$, $u^2 = 0$, then $d = e, v = u$).
Lemma 1. For any dsc-pola B if $w \in B$, $w^2 = 0$ and $w \geq -1$, then $w \geq 0$.

Proof. Since $1 + w \geq 0$, we have $(1 + w)^n \geq 0$ or $1 + nw \geq 0$, for all $n > 0$. This means $w \geq -(1/n)1$ for all n. By the Archimedean property we have $w \geq 0$. □

Lemma 2. For any dsc-pola B if $w \geq 0$, $w^2 = 0$, then for any $0 \leq a \in B_1$ (B_1 is the diagonal part of B), $(aw)^2 = (wa)^2 = 0$.

Proof. See the remark of Theorem II. 3.6 of [2]. □

Lemma 3. If a dsc-pola B has the following property: given any $1 \leq x \in B$, x^{-1} exists and $x^{-1} \leq 1$, then for any $0 \leq w \in B$, $w^n = 0$, $n \geq 2$, we have $w^a = 0$; moreover, the sum (product) of positive nilpotents is a nilpotent (zero).

Proof. See Theorems II. 3.1, II. 3.2 and its corollary in [2]. □

Lemma 4. For any dsc-pola B, let $x \in B$, $0 \leq x \leq 1$, if there exists $0 \leq y$ such that $1 \leq xy + yx$, then x^{-1} exists and $x^{-1} \geq 1$.

Proof. Put $z = 1 - x \geq 0$. By assumption we have $1 \leq xy + yx = (1 - z)y + y(1 - z)$ or $1 \leq 1 + zy + yz \leq 2y$. Hence, $2y \geq 1 + z(1) + (1)z = 1 + z$. By induction we will show $2y \geq 1 + \sum_{k=1}^{n} z^k = h_n$ for all n. The assertion is clearly true for $n = 1$. If the assertion is true for $n = m$, i.e., $2y \geq h_m$, then for $n = m + 1$, we first observe that $2yz \geq h_m z$, $2zy \geq zh_m$ and $h_m z = zh_m$; hence,

$$2y \geq 1 + yz + zy \geq 1 + \frac{1}{2}(h_m z + zh_m) = 1 + zh_m = 1 + \sum_{k=1}^{m+1} z^k = h_{m+1}.$$

Therefore, h_n is bounded above by $2y$, by Proposition 2 in [3] we see

$$1 \leq h = \sup \{h_n\} = \sum_{k=0}^{\infty} z^k = (1 - z)^{-1} \leq 2y.$$

Theorem 5. Let the dsc-pola A have the MD property. If $0 \leq x \in A$, then $x = c + w$, where $0 \leq c \in A_1$, $0 \leq w$ and $w^a = 0$.

Proof. Put $y = x + 2 \geq 2$. Clearly $1 \leq y^2 - 1 \leq y^2$. By the MD property there exists $z_1, z_2 \in A$ such that $0 \leq z_1 \leq y$, $0 \leq z_2 \leq y$ and $y^2 - 1 = z_1 z_2$. Thus

$$1 = y(y - z_2) + (y - z_1)z_2 = (y - z_1)y + z_1(y - z_2).$$

From this we see easily that

$$1 \geq y(y - z_2) \geq y - z_2 \geq 0, \quad 1 \geq (y - z_1)y \geq y - z_1 \geq 0.$$

Hence, $z_1 \geq y - 1 \geq 1$, $z_2 \geq y - 1 \geq 1$. Put $a = y - z_1$, $b = y - z_2$. Then $1 \geq ay \geq a \geq 0, 1 \geq yb \geq b \geq 0$; this means a, b, ay, yb all belong to A_1; therefore, they
commute with each other. Now $0 \leq a + b \leq 1 = az_2 + yb \leq ay + yb \leq 2$. Thus,
$$1 \leq (a + b)y + y(a + b).$$
By Lemma 4 this implies $(a + b)^{-1}$ exists and $0 \leq (a + b)^{-1} \in A_1$. Next observe that
$$a(ya - ay) = (ay)a - a^2y = a(ay) - a^2y = 0$$
and
$$(ya - ay)b = y(ab) - ayb = y(ba) - ayb = (yb)a - ayb = a(ay) - ayb = 0.$$ Put $v = (ya - ay)a$. Then
$$v^2 = (ya - ay)(a(ya - ay))a = 0,$$ and
$$(ya - ay)(a + b) = (ya - ay)a + (ya - ay)b = v + 0 = v.$$ Since $(a + b)^{-1}$ exists, we have $ya - ay = v(a + b)^{-1}$ or $ya = ay + v(a + b)^{-1}$.
Now note, by Lemma 1, we have $y \geq 0$. But from $0 \leq y(a + b) = ya + yb \leq yb + ay + v(a + b)^{-1} \leq 2 + v(a + b)^{-1}$. Thus, $-2 \leq -(a + b)^{-1} \geq 0$ (since $1 \geq a + b \geq 0$).
By Lemma 1, we have $v \geq 0$. But from $0 \leq y(a + b) = ya + yb + v(a + b)^{-1}$, and $(a + b)^{-1} \geq 0$, we get
$$y = (ay + yb)(a + b)^{-1} + v(a + b)^{-2} = c_1 + w,$$ where $0 \leq c_1 = (ay + yb)(a + b)^{-1} \in A_1$, $0 \leq w = v(a + b)^{-2}$.
By Lemma 2, $w^2 = 0$. Finally, observe that $2(a + b) \leq ay + yb$. Since $(a + b)^{-1} \geq 0$, we obtain
$$2 \leq c_1 = (ay + yb)(a + b)^{-1} \in A_1.$$ Now $y = x + 2 = c_1 + w$ or $x = c + w$, where $c = c_1 - 2 \geq 0$. The proof is complete. ∎

Corollary 6. If the dsc-pola A has the MD property and if $u = u_1u_2 = u_2u_1$, where u_1, u_2, u are as in the definition of the decomposition property, then $A = A_1$.

Proof. For any $1 \leq x \in A$, we want to show $x^{-1} \geq 0$. Choose $y \in A$, such that $1 \leq x \leq x + 1 \leq y$. Clearly $2 \leq y$ and $1 \leq y^2 - 1 \leq y^2$. Thus, by the MD property and the assumption, there exists $0 \leq z_1 \leq y$, $0 \leq z_2 \leq y$ such that $y^2 - 1 = z_1z_2 = z_2z_1$ or
$$1 = y(y - z_2) + (y - z_1)z_2 = (y - z_1)y + z_1(y - z_2) = y(y - z_1) + (y - z_2)z_1.$$
Put $0 \leq a = y - z_1$, $0 \leq b = y - z_2$. Then proceed as in Theorem 5. Note now
$1 \geq ay \geq a \geq 0$, $1 \geq ya \geq a \geq 0$, so $ay, ya \in A_1$, hence, $ya - ay \in A_1$. This
implies $v = (ya - ay)a \in A_1$ (v as in the proof of Theorem 5). But $v^2 = 0$;
this by Corollary I. 2.5 of [2] implies $v = 0$. Therefore, $w = v(a + b)^{-2} = 0$;
hence, $2 \leq y = c_1 + w = c_1 \in A_1$. This means $y^{-1} \geq 0$. By Proposition 3 of [3]
we see $x^{-1} \geq 0$, hence, $x \in A_1$, thus, $A = A_1$. □

Corollary 7. If A has the MD property, then for any $1 \leq x \in A$, x^{-1}
exists and $x^{-1} \leq 1$.

Proof. From Theorem 5 we see easily that if $1 \leq x \in A$, then $x = c + w$,
where $1 \leq c \in A_1$, $0 \leq w$, $w^2 = 0$. Since $0 \leq c^{-1} \leq 1$, we have $0 \leq c^{-1}w \leq w$, so
$(c^{-1}w)^2 = 0$. Now $x = c(1 + c^{-1}w)$, thus,
$x^{-1} = (1 - c^{-1}w)c^{-1} = c^{-1} - c^{-1}wc^{-1} \leq c^{-1} \leq 1$. □

Remark. The converse of the theorem in general is not true; see the
example at the end.

Corollary 8. If A has the MD property, and $w \in A$, $w^2 = 0$, then
$w = w_1 - w_2$, where $0 \leq w_i \in A$, $w_i^2 = 0$ ($i = 1, 2$), and $-v \leq w \leq v$ for some $0 \leq v \in A$, $v^2 = 0$.

Proof. Let $w = x_1 - x_2$, $0 \leq x_i$, $i = 1, 2$. By Theorem 5 $x_i = c_i + w_i$,
where $0 \leq c_i \in A_1$, $0 \leq w_i$, $w_i^2 = 0$, so $w = (c_1 - c_2) + (w_1 - w_2)$. Squaring both
sides and using Corollary 7 and Lemma 3 we have

$$w^2 = 0 = (c_1 - c_2)^2 + (c_1 - c_2)(w_1 - w_2) + (w_1 - w_2)(c_1 - c_2)$$
or

$$-(c_1 - c_2)^2 = (c_1 - c_2)(w_1 - w_2) + (w_1 - w_2)(c_1 - c_2).$$

Squaring both sides again and repeatedly using Lemma 2, Lemma 3, and
Corollary 7, we have $(c_1 - c_2)^4 = 0$. But $c_1 - c_2 \in A_1$: by Corollary I. 2.5
of [2] we see easily that $c_1 - c_2 = 0$, so that $w = w_1 - w_2$. By putting $v = w_1 + w_2$, and using Lemma 3, the assertion is now clear. □

Remark. By the same method above, we can actually show that for
any $w \in A$, if $w^n = 0$, $n > 2$, then $w^2 = 0$. Furthermore, by this corollary
and Lemma 3, it is quite easy to see that the sum (product) of any two
nilpotents is a nilpotent (zero).

Now the proof of the Main Theorem is straightforward as follows:
For any $x \in A$, $x = x_1 - x_2 = (c_1 + w_1) - (c_2 + w_2) = d + w$, where $0 \leq x_i =
c_i + w_i$, $0 \leq c_i \in A_1$, $0 \leq w_i$, $w_i^2 = 0$ ($i = 1, 2$), and $d = c_1 - c_2 \in A_1$, $w = w_1 - w_2$.
Note that $w^2 = 0$. For the uniqueness part: Suppose $x = d + w = e + u$, $e \in A_1$, $u^2 = 0$. Then $d - e = u - w$. Squaring both sides and using the remark of
Corollary 8 and Corollary I. 2.5 of [2], we see immediately that $d = e$ and
$u = w$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Let \(N = \{ w : w \in A, w^2 = 0 \} \). From Corollary 8 and its remark we know \(N \) is an additive group; it is trivial to verify that \(N \) is a dsc-pola. Now we show that \(N \) has the well-known addition decomposition property:

Theorem 9. If \(u_i \in N, u_i \geq 0 \) \((i = 1, 2)\) and \(0 \leq w \leq u_1 + u_2 \), then there exists \(0 \leq w_i \leq u_i \) such that \(w = w_1 + w_2 \).

Proof. Since \(0 \leq w \leq (1 + u_1)(1 + u_2) = 1 + u_1 + u_2 \), by the MD property, we have \(w = z_1 z_2 \) where \(0 \leq z_i \leq 1 + u_i \) \((i = 1, 2)\). By Theorem 5 we obtain easily that \(z_i = a_i + v_i \), where \(0 \leq a_i \leq 1, 0 \leq v_i \leq u_i \). Now

\[
 w = (a_1 + v_1)(a_2 + v_2) = a_1 a_2 + a_1 v_2 + v_1 a_2.
\]

This implies \(0 \leq a_1 a_2 \leq w \). Therefore, \((a_1 a_2)^2 = 0 \). But \(a_1 a_2 \in A_1 \), hence, \(a_1 a_2 = 0 \). Now by putting \(w_1 = v_1 a_2, w_2 = a_1 v_2 \), then the assertion is clear. \(\square \)

Example 1. Let \(A \) be the real linear algebra of matrices (real entries) of some given finite order. If \(A \) is partially ordered componentwise, then the diagonal part \(A_1 \) of \(A \) is nothing but all the diagonal matrices. If, in particular, \(A \) consists of the matrices which have the form \(x = [\alpha_{ij}] \) where \(\alpha_{ij} = 0 \) for \(i \neq j \) or \(i \neq 1 \), then the readers are invited to verify that \(A \) has the MD property. Note each element in \(A \) can be written as a diagonal matrix plus a nilpotent matrix.

Example 2. \(A\{[x \delta] : x, \delta \text{ are reals}\} \). If we order \(A \) componentwise, then \(A \) is a dsc-pola. It can be verified easily that \(A \) has no MD property, but each element of \(A \) can be decomposed as a diagonal matrix plus a nilpotent matrix. This means the converse of the Main Theorem is not true.

Acknowledgement. This problem was brought to the author’s attention by Professor R. DeMarr. The author wishes to thank him for his valuable criticism in preparing this work.

References

Department of Mathematics, York College, City University of New York, Jamaica, New York 11432