Proof of a polynomial conjecture
HTML articles powered by AMS MathViewer
- by G. K. Kristiansen
- Proc. Amer. Math. Soc. 44 (1974), 58-60
- DOI: https://doi.org/10.1090/S0002-9939-1974-0340516-4
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 58 (1976), 377.
Abstract:
Let a real polynomial have only real roots, all belonging to an interval $I$. An inequality is proved, relating the average value of the polynomial between two consecutive roots to its maximal absolute value in $I$.References
- P. Erdös, Note on some elementary properties of polynomials, Bull. Amer. Math. Soc. 46 (1940), 954–958. MR 3595, DOI 10.1090/S0002-9904-1940-07343-4
- P. Erdös and T. Grünwald, On polynomials with only real roots, Ann. of Math. (2) 40 (1939), 537–548. MR 7, DOI 10.2307/1968938
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 44 (1974), 58-60
- MSC: Primary 26A75; Secondary 42A04
- DOI: https://doi.org/10.1090/S0002-9939-1974-0340516-4
- MathSciNet review: 0340516