Extreme measurable selections
HTML articles powered by AMS MathViewer
- by Jerry A. Johnson
- Proc. Amer. Math. Soc. 44 (1974), 107-112
- DOI: https://doi.org/10.1090/S0002-9939-1974-0341068-5
- PDF | Request permission
Abstract:
The extreme points of the set of measurable selections for a set-valued mapping are characterized. As a corollary, the extreme points of the unit ball of the space of “vector-valued ${L^p}$ functions” are characterized, thus generalizing results of Sundaresan.References
- Robert J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1–12. MR 185073, DOI 10.1016/0022-247X(65)90049-1
- N. Dinculeanu, Vector measures, Hochschulbücher für Mathematik, Band 64, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966. MR 0206189
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- Stanisław Saks, Theory of the integral, Second revised edition, Dover Publications, Inc., New York, 1964. English translation by L. C. Young; With two additional notes by Stefan Banach. MR 0167578
- K. Sundaresan, Extreme points of the unit cell in Lebesgue-Bochner function spaces. I, Proc. Amer. Math. Soc. 23 (1969), 179–184. MR 247453, DOI 10.1090/S0002-9939-1969-0247453-2
- John von Neumann, On rings of operators. Reduction theory, Ann. of Math. (2) 50 (1949), 401–485. MR 29101, DOI 10.2307/1969463
- Robert R. Phelps, Lectures on Choquet’s theorem, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0193470
- Samuel Karlin, Extreme points of vector functions, Proc. Amer. Math. Soc. 4 (1953), 603–610. MR 56668, DOI 10.1090/S0002-9939-1953-0056668-6
- Henry Hermes and Joseph P. LaSalle, Functional analysis and time optimal control, Mathematics in Science and Engineering, Vol. 56, Academic Press, New York-London, 1969. MR 0420366
- Kondagunta Sundaresan, Extreme points of convex sets and selection theorems, Set-Valued Mappings, Selections and Topological Properties of $2^X$ (Proc. Conf., SUNY, Buffalo, N.Y., 1969) Lecture Notes in Mathematics, Vol. 171, Springer, Berlin, 1970, pp. 82–87. MR 0292018
- Kondagunta Sundaresan, Extreme points of the unit cell in Lebesgue-Bochner function spaces, Colloq. Math. 22 (1970), 111–119. MR 276753, DOI 10.4064/cm-22-1-111-119
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 44 (1974), 107-112
- MSC: Primary 46E40; Secondary 28A45
- DOI: https://doi.org/10.1090/S0002-9939-1974-0341068-5
- MathSciNet review: 0341068