The excess of sets of complex exponentials
HTML articles powered by AMS MathViewer
- by David R. Peterson
- Proc. Amer. Math. Soc. 44 (1974), 321-325
- DOI: https://doi.org/10.1090/S0002-9939-1974-0340946-0
- PDF | Request permission
Abstract:
Let $\Lambda = \{ {\lambda _n}\}$ be a complex sequence and denote its associated set of complex exponentials $\{ \exp (i{\lambda _n}x)\}$ by $e(\Lambda )$. Redheffer and Alexander have shown that if $\sum {|{\lambda _n} - {\mu _n}|} < \infty$ then $e(\Lambda )$ and $e(\mu )$ have the same excess over their common completeness interval. This paper shows this result to be the best possible.References
- William O. Alexander Jr. and Ray Redheffer, The excess of sets of complex exponentials, Duke Math. J. 34 (1967), 59–72. MR 206614
- Arne Beurling and Paul Malliavin, On the closure of characters and the zeros of entire functions, Acta Math. 118 (1967), 79–93. MR 209758, DOI 10.1007/BF02392477
- Jürgen Elsner, Zulässige Abänderungen von Exponentialsystemen im $L^{p}(-A, A)$, Math. Z. 120 (1971), 211–220. MR 435721, DOI 10.1007/BF01117495
- M. Ĭ. Kadec′, The exact value of the Paley-Wiener constant, Dokl. Akad. Nauk SSSR 155 (1964), 1253–1254 (Russian). MR 0162088
- A. E. Ingham, Some trigonometrical inequalities with applications to the theory of series, Math. Z. 41 (1936), no. 1, 367–379. MR 1545625, DOI 10.1007/BF01180426 J. Kahane, Travaux de Beurling et Malliavin, Séminaire Bourbaki, 1961/1962, fasc. 1, Exposé 225, 2ième éd., Secrétariat mathématique, Paris, 1962. MR 26 #3561; errata, 30, 1203.
- Norman Levinson, Gap and Density Theorems, American Mathematical Society Colloquium Publications, Vol. 26, American Mathematical Society, New York, 1940. MR 0003208
- Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR 1451142, DOI 10.1090/coll/019
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 44 (1974), 321-325
- MSC: Primary 42A64
- DOI: https://doi.org/10.1090/S0002-9939-1974-0340946-0
- MathSciNet review: 0340946