A Riesz product proof of the Wiener-Pitt theorem
HTML articles powered by AMS MathViewer
- by Colin C. Graham
- Proc. Amer. Math. Soc. 44 (1974), 312-314
- DOI: https://doi.org/10.1090/S0002-9939-1974-0340972-1
- PDF | Request permission
Abstract:
A Riesz product proof of the Wiener-Pitt theorem is given.References
- I. Gelfand, Normierte Ringe, Rec. Math. [Mat. Sbornik] N.S. 9 (51) (1941), 3–24 (German, with Russian summary). MR 0004726
- Richard R. Goldberg, Restrictions of Fourier transforms and extension of Fourier sequences, J. Approximation Theory 3 (1970), 149–155. MR 261269, DOI 10.1016/0021-9045(70)90023-7
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
- Edwin Hewitt and Herbert S. Zuckerman, Singular measures with absolutely continuous convolution squares, Proc. Cambridge Philos. Soc. 62 (1966), 399–420. MR 193435, DOI 10.1017/s0305004100039992
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- N. Wiener and H. R. Pitt, On absolutely convergent Fourier-Stieltjes transforms, Duke Math. J. 4 (1938), no. 2, 420–436. MR 1546064, DOI 10.1215/S0012-7094-38-00435-1
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 44 (1974), 312-314
- MSC: Primary 43A25
- DOI: https://doi.org/10.1090/S0002-9939-1974-0340972-1
- MathSciNet review: 0340972