On a theorem of a Pełczyński
HTML articles powered by AMS MathViewer
- by John L. B. Gamlen
- Proc. Amer. Math. Soc. 44 (1974), 283-285
- DOI: https://doi.org/10.1090/S0002-9939-1974-0341036-3
- PDF | Request permission
Abstract:
If $Y$ is a weakly complete Banach space, and $X$ is a Banach space with separable dual, then every continuous linear operator from ${C_X}(K)$ to $Y$ must be weakly compact. Here ${C_X}(K)$ denotes the space of continuous functions on the compact Hausdorff space $K$, having values in $X$.References
- C. A. Akemann, P. G. Dodds, and J. L. B. Gamlen, Weak compactness in the dual space of $C^{\ast }$-algebra, J. Functional Analysis 10 (1972), 446–450. MR 0344898, DOI 10.1016/0022-1236(72)90040-7
- Jürgen Batt and E. Jeffrey Berg, Linear bounded transformations on the space of continuous functions. , J. Functional Analysis 4 (1969), 215–239. MR 0248546, DOI 10.1016/0022-1236(69)90012-3
- C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–164. MR 115069, DOI 10.4064/sm-17-2-151-164
- C. Bessaga and A. Pełczyński, A generalization of results of R. C. James concerning absolute bases in Banach spaces, Studia Math. 17 (1958), 165–174. MR 115071, DOI 10.4064/sm-17-2-165-174
- A. Grothendieck, Sur les applications linéaires faiblement compactes d’espaces du type $C(K)$, Canad. J. Math. 5 (1953), 129–173 (French). MR 58866, DOI 10.4153/cjm-1953-017-4
- Robert C. James, A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 174–177. MR 44024, DOI 10.1073/pnas.37.3.174
- A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209–228. MR 126145, DOI 10.4064/sm-19-2-209-228
- A. Pełczyński, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. MR 149295
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 44 (1974), 283-285
- MSC: Primary 46B99
- DOI: https://doi.org/10.1090/S0002-9939-1974-0341036-3
- MathSciNet review: 0341036