Prime von Neumann regular rings and primitive group algebras
HTML articles powered by AMS MathViewer
- by Joe W. Fisher and Robert L. Snider
- Proc. Amer. Math. Soc. 44 (1974), 244-250
- DOI: https://doi.org/10.1090/S0002-9939-1974-0342551-9
- PDF | Request permission
Abstract:
Kaplansky posed the following question: Are prime von Neumann regular rings primitive? We show that with a certain countability condition the answer is affirmative. This is used to simplify and clarify earlier work on the existence of primitive group algebras.References
- J. S. Alin and E. P. Armendariz, $\textrm {TTF}$-classes over perfect rings, J. Austral. Math. Soc. 11 (1970), 499–503. MR 0274495
- Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 157984, DOI 10.1090/S0002-9947-1960-0157984-8
- Ian G. Connell, On the group ring, Canadian J. Math. 15 (1963), 650–685. MR 153705, DOI 10.4153/CJM-1963-067-0
- Edward Formanek, A problem of Passman on semisimplicity, Bull. London Math. Soc. 4 (1972), 375–376. MR 314890, DOI 10.1112/blms/4.3.375
- Edward Formanek and Robert L. Snider, Primitive group rings, Proc. Amer. Math. Soc. 36 (1972), 357–360. MR 308178, DOI 10.1090/S0002-9939-1972-0308178-8
- Nathan Jacobson, Structure of rings, Revised edition, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, Providence, R.I., 1964. MR 0222106
- Irving Kaplansky, Algebraic and analytic aspects of operator algebras, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 1, American Mathematical Society, Providence, R.I., 1970. MR 0312283
- Joachim Lambek, Lectures on rings and modules, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. With an appendix by Ian G. Connell. MR 0206032
- Wallace S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584. MR 238897, DOI 10.1016/0021-8693(69)90029-5
- Gerhard Michler, Idempotent ideals in perfect rings, Canadian J. Math. 21 (1969), 301–309. MR 238885, DOI 10.4153/CJM-1969-031-0
- D. S. Passman, Primitive group rings, Pacific J. Math. 47 (1973), 499–506. MR 332942
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 44 (1974), 244-250
- MSC: Primary 16A30
- DOI: https://doi.org/10.1090/S0002-9939-1974-0342551-9
- MathSciNet review: 0342551