Distortion properties of $p$-fold symmetric alpha-starlike functions
HTML articles powered by AMS MathViewer
- by H. B. Coonce and S. S. Miller
- Proc. Amer. Math. Soc. 44 (1974), 336-340
- DOI: https://doi.org/10.1090/S0002-9939-1974-0344440-2
- PDF | Request permission
Abstract:
Starlike functions $f$ which are of Mocanu type $\alpha$ and have power series of the form \[ f(z) = z + {a_{p + 1}}{z^{p + 1}} + {a_{2p + 1}}{z^{2p + 1}} + \cdots ,\] where $p = 1,2,3, \cdots$, are shown to satisfy the relation $f(z) = {[g({z^p})]^{1/p}}$ where $g$ is of Mocanu type $p\alpha$ with power series $g(z) = z + {b_2}{z^2} + {b_3}{z^3} + \cdots$. Distortion results dealing with the $\tfrac {1}{4}$-theorem and bounds on $|f(z)|$ are obtained.References
- Sanford S. Miller, Distortions properties of alpha-starlike functions, Proc. Amer. Math. Soc. 38 (1973), 311–318. MR 310222, DOI 10.1090/S0002-9939-1973-0310222-X
- Sanford S. Miller, Petru Mocanu, and Maxwell O. Reade, All $\alpha$-convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37 (1973), 553–554. MR 313490, DOI 10.1090/S0002-9939-1973-0313490-3
- Petru T. Mocanu, Une propriété de convexité généralisée dans la théorie de la représentation conforme, Mathematica (Cluj) 11(34) (1969), 127–133 (French). MR 273000
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 44 (1974), 336-340
- MSC: Primary 30A32
- DOI: https://doi.org/10.1090/S0002-9939-1974-0344440-2
- MathSciNet review: 0344440