A NOTE ON WALLMAN EXTENDIBLE FUNCTIONS

DARRELL W. HAJEK

Abstract. It is known that any continuous function into a T_4 space has a unique continuous Wallman extension, and that any continuous Wallman extension of a continuous function with a T_5 range must be unique. We show that for any T_3 space Y which is not T_4 there exists a T_3 space X and a continuous function $f: X \to Y$ which has no continuous Wallman extension.

In this paper we will consider only T_1 spaces. In [2] it is shown that if Y is a T_3 space and $f: X \to Y$ is a continuous function having a continuous Wallman extension $f^*: W(X) \to W(Y)$ then the extension is unique. Furthermore it follows immediately from the fact that if Y is T_4 then $W(Y)$ is T_4 and from the Taimanov theorem (see [1, p. 110]) that if Y is T_4 then any continuous function $f: X \to Y$ has a continuous Wallman extension, and so it is natural to ask whether the condition that Y be T_4 can be relaxed. In this paper we show that, if consideration is restricted to T_3 spaces, the answer is no.

Recall that for a given space X the Wallman compactification $W(X)$ is the collection of all ultrafilters in the lattice of closed subsets of X given the topology generated by the collection of all sets of the form $C(A) = \{u \in W(X): A \in u\}$, where A is closed in X as a base for the closed sets.

The function $\varphi_X: X \to W(X)$ defined by $\varphi_X(x) = \{A: A$ closed in X and $x \in A\}$ is a dense embedding of X in $W(X)$. A Wallman extension of a function $f: X \to Y$ is a function $f^*: W(X) \to W(Y)$ such that $f^* \circ \varphi_X = \varphi_Y \circ f$.

Theorem. Let Y be a T_3 space. Then, unless Y is T_4, there is a T_3 space X and a continuous function $f: X \to Y$ which has no continuous Wallman extension.

Proof. In [2] it was proved that if T is T_3, then, given any continuous function $g: Z \to T$ which has a continuous Wallman extension $g^*: W(Z) \to W(T)$, for each $u \in W(Z)$, $\{g^*(u)\} = \bigcap \{C(\text{cl}_T(g[A])): A \in u\}$. Suppose now...
that Y is not T_4. $W(Y)$ is not Hausdorff; so there exist two points $u, v \in W(Y)$ which cannot be separated by disjoint open sets. Let \mathcal{O} denote the set $\{\varphi_Y^{-1}[U \cap V] : U, V \text{ open in } W(Y), u \in U, \text{ and } v \in V\}$. We denote by X the product space $\prod \{O : O \in \mathcal{O}\}$ and by q the projection of X onto $\varphi_Y^{-1}[W(Y) \cap W(Y)] = Y$. For each $P \in \mathcal{O}$ we define $A(P)$ to be $\{(y_0)_{O \in \mathcal{O}} \in X : P \subseteq O \Rightarrow y_0 \in \varphi_Y^{-1}(P)\}$. It is immediate that $\{A(P) : P \in \mathcal{O}\}$ is a filterbase in the lattice of closed subsets of X, and, hence, must be contained in some $w \in W(X)$. Suppose q were to have a continuous Wallman extension q^*. If $q^*(w) \neq u$ there is some $K \in w$ such that $u \notin \text{cl}_Y(q[K])$. However

$$
\varphi_Y^{-1}[W(Y) \sim \text{cl}_Y(q[K])] = Y \sim \text{cl}_Y(q[K]) \in \mathcal{O}
$$

and

$$
A(Y \sim \text{cl}_Y(q[K])) \subseteq \varphi_Y^{-1}[Y \sim \text{cl}_Y(q[K])];
$$

so, since $A(Y \sim \text{cl}_Y(q[K]))$ must have nonempty intersection with K, $q^*(w)$ must be u, but, since precisely the same argument can be used to show $q^*(w) = v$, we must conclude that q has no continuous Wallman extension.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PUERTO RICO, MAYAGUEZ, PUERTO RICO 00708