## Localizing equivariant bordism

HTML articles powered by AMS MathViewer

- by E. R. Wheeler
- Proc. Amer. Math. Soc.
**44**(1974), 485-491 - DOI: https://doi.org/10.1090/S0002-9939-1974-0345122-3
- PDF | Request permission

## Abstract:

The unitary bordism of a finite group is computed up to torsion and an equivariant Rohlin exact sequence is exhibited for groups of odd order.## References

- Pierre E. Conner,
*Lectures on the action of a finite group*, Lecture Notes in Mathematics, No. 73, Springer-Verlag, Berlin-New York, 1968. MR**0258023**
P. E. Connor and E. E. Floyd, - Erich Ossa,
*Unitary bordism of abelian groups*, Proc. Amer. Math. Soc.**33**(1972), 568–571. MR**293666**, DOI 10.1090/S0002-9939-1972-0293666-3 - R. E. Stong,
*Complex and oriented equivariant bordism*, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969) Markham, Chicago, Ill., 1970, pp. 291–316. MR**0273644** - Robert E. Stong,
*Notes on cobordism theory*, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. Mathematical notes. MR**0248858** - R. E. Stong,
*Unoriented bordism and actions of finite groups*, Memoirs of the American Mathematical Society, No. 103, American Mathematical Society, Providence, R.I., 1970. MR**0273645**
E. R. Wheeler, - Joseph A. Wolf,
*Spaces of constant curvature*, McGraw-Hill Book Co., New York-London-Sydney, 1967. MR**0217740**

*Differentiable periodic maps*, Ergebnisse der Math. und ihrer Grenzgebiete, Band 33, Springer-Verlag, Berlin; Academic Press, New York, 1964. MR

**31**#750. E. E. Floyd,

*Periodic maps via Smith theory*, Ann. of Math. Studies, no. 46, Chapter III, Princeton Univ. Press, Princeton, N.J., 1960.

*The oriented bordism of cyclic groups*, Dissertation, University of Virginia, Charlottesville, Va., 1973.

## Bibliographic Information

- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**44**(1974), 485-491 - MSC: Primary 57D85; Secondary 55B25
- DOI: https://doi.org/10.1090/S0002-9939-1974-0345122-3
- MathSciNet review: 0345122