Two unrelated results involving Baire spaces
HTML articles powered by AMS MathViewer
- by H. E. White
- Proc. Amer. Math. Soc. 44 (1974), 463-466
- DOI: https://doi.org/10.1090/S0002-9939-1974-0346761-6
- PDF | Request permission
Abstract:
Two results are obtained in this paper. The first is a generalization of J. C. Oxtoby’s category analogue of the Kolmogoroff zero-one law. The second result: every dense ${G_\delta }$ subset of a quasi-regular $\alpha$-favorable space is $\alpha$-favorable.References
- Gustave Choquet, Lectures on analysis. Vol. I: Integration and topological vector spaces, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Edited by J. Marsden, T. Lance and S. Gelbart. MR 0250011
- John C. Oxtoby, Cartesian products of Baire spaces, Fund. Math. 49 (1960/61), 157–166. MR 140638, DOI 10.4064/fm-49-2-157-166
- M. Bhaskara Rao and K. P. S. Bhaskara Rao, A category analogue of the Hewitt-Savage zero-one law, Proc. Amer. Math. Soc. 44 (1974), 497–499. MR 345084, DOI 10.1090/S0002-9939-1974-0345084-9 H. E. White, Jr., Topological spaces that are $\alpha$-favorable for a player with perfect information, Proc. Amer. Math. Soc. (to appear).
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 44 (1974), 463-466
- MSC: Primary 54E99
- DOI: https://doi.org/10.1090/S0002-9939-1974-0346761-6
- MathSciNet review: 0346761