On the a.e. convergence of Walsh-Kaczmarz-Fourier series
HTML articles powered by AMS MathViewer
- by Wo Sang Young
- Proc. Amer. Math. Soc. 44 (1974), 353-358
- DOI: https://doi.org/10.1090/S0002-9939-1974-0350310-6
- PDF | Request permission
Abstract:
It is shown that partial sums of Walsh-Kaczmarz-Fourier series of functions in the Orlicz class $L{({\log ^ + }L)^2}$ converge a.e. The proof utilizes an estimate of P. Sjölin on the partial sums of the usual Walsh-Fourier series.References
- L. A. Balašov, Series with respect to the Walsh system with monotone coefficients. , Sibirsk. Mat. Ž. 12 (1971), 25–39 (Russian). MR 0284758
- Lennart Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135–157. MR 199631, DOI 10.1007/BF02392815
- Kai Lai Chung, A course in probability theory, Harcourt, Brace & World, Inc., New York, 1968. MR 0229268
- J. A. Gosselin and W. S. Young, On rearrangements of Vilenkin-Fourier series which preserve almost everywhere convergence, Trans. Amer. Math. Soc. 209 (1975), 157–174. MR 399756, DOI 10.1090/S0002-9947-1975-0399756-6
- Richard A. Hunt, On the convergence of Fourier series, Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967) Southern Illinois Univ. Press, Carbondale, Ill., 1968, pp. 235–255. MR 0238019 —, Almost everywhere convergence of Walsh-Fourier series of ${L^2}$ functions, Proc. Internat. Congress Math. (Nice, 1970), vol. 2, Gauthier-Villars, Paris, 1971, pp. 655-661. K. H. Moon, Maximal functions related to certain linear operators, Doctoral Dissertation, Purdue University, West Lafayette, Ind., 1972. R. E. A. C. Paley, A remarkable series of orthogonal functions. I, Proc. London Math. Soc. 34 (1932), 241-264.
- Per Sjölin, An inequality of Paley and convergence a.e. of Walsh-Fourier series, Ark. Mat. 7 (1969), 551–570. MR 241885, DOI 10.1007/BF02590894
- Elias M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory. , Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970. MR 0252961 W. S. Young, Maximal inequalities and almost everywhere convergence, Doctoral Dissertation, Purdue University, West Lafayette, Ind., 1973.
- Wo Sang Young, On rearrangements of Walsh-Fourier series and Hardy-Littlewood type maximal inequalities, Bull. Amer. Math. Soc. 80 (1974), 490–494. MR 333571, DOI 10.1090/S0002-9904-1974-13463-4
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 44 (1974), 353-358
- MSC: Primary 42A56
- DOI: https://doi.org/10.1090/S0002-9939-1974-0350310-6
- MathSciNet review: 0350310