Fixed point theorems in uniformly convex Banach spaces
HTML articles powered by AMS MathViewer
- by Michael Edelstein
- Proc. Amer. Math. Soc. 44 (1974), 369-374
- DOI: https://doi.org/10.1090/S0002-9939-1974-0358451-4
- PDF | Request permission
Abstract:
The notion of an asymptotic center is used to prove a number of results concerning the existence of fixed points under certain selfmappings of a closed and bounded convex subset of a uniformly convex Banach space.References
- Felix E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041–1044. MR 187120, DOI 10.1073/pnas.54.4.1041
- Michael Edelstein, The construction of an asymptotic center with a fixed-point property, Bull. Amer. Math. Soc. 78 (1972), 206–208. MR 291917, DOI 10.1090/S0002-9904-1972-12918-5
- Dietrich Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251–258 (German). MR 190718, DOI 10.1002/mana.19650300312
- W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004–1006. MR 189009, DOI 10.2307/2313345
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 44 (1974), 369-374
- MSC: Primary 47H10
- DOI: https://doi.org/10.1090/S0002-9939-1974-0358451-4
- MathSciNet review: 0358451