Characterization of Mergelyan sets
HTML articles powered by AMS MathViewer
- by A. Stray
- Proc. Amer. Math. Soc. 44 (1974), 347-352
- DOI: https://doi.org/10.1090/S0002-9939-1974-0361097-5
- PDF | Request permission
Abstract:
Necessary and sufficient conditions on a relatively closed subset $F$ of $D = \{ z:|z| < 1\}$ are given such that each analytic function in $D$ which is uniformly continuous on $F$ can be uniformly approximated by polynomials on $K \cup F$ for each compact subset $K$ of $D$.References
- M. Brelot, Éléments de la théorie classique du potentiel, “Les Cours de Sorbonne”, vol. 3, Centre de Documentation Universitaire, Paris, 1959 (French). MR 0106366
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- L. A. Rubel and A. L. Shields, Bounded approximation by polynomials, Acta Math. 112 (1964), 145–162. MR 174913, DOI 10.1007/BF02391768
- L. A. Rubel, A. L. Shields, and B. A. Taylor, Mergelyan sets and the modulus of continuity of analytic functions, J. Approximation Theory 15 (1975), no. 1, 23–40. MR 412395, DOI 10.1016/0021-9045(75)90112-4
- A. Stray, Pointwise bounded approximation by functions satisfying a side condition, Pacific J. Math. 51 (1974), 301–305. MR 357809
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 44 (1974), 347-352
- MSC: Primary 30A82
- DOI: https://doi.org/10.1090/S0002-9939-1974-0361097-5
- MathSciNet review: 0361097