THE APPROXIMATION OF ONE-ONE MEASURABLE TRANSFORMATIONS BY MEASURE PRESERVING HOMEOMORPHISMS

H. E. WHITE, JR.

ABSTRACT. This paper contains two results related to the material in [2]. Suppose f is a one-one transformation of the open unit interval I^n (where $n \geq 2$) onto I^n. 1. If f is absolutely measurable and $\varepsilon > 0$, then there is an absolutely measurable homeomorphism φ_ε of I^n onto I^n such that $m(\{x: f(x) \neq \varphi_\varepsilon(x) \text{ or } f^{-1}(x) \neq \varphi_\varepsilon^{-1}(x)\}) < \varepsilon$, where m denotes n-dimensional Lebesgue measure. 2. Suppose μ is either (1) a nonatomic, finite Borel measure on I^n such that $\mu(G) > 0$ for every nonempty open subset G of I^n, or (2) the completion of a measure of type (1). If f is μ-measure preserving and $\varepsilon > 0$, then there is a μ-measure preserving homeomorphism φ_ε of I^n onto I^n such that $\mu(\{x: f(x) \neq \varphi_\varepsilon(x)\}) < \varepsilon$.

1. For any subset S of n-dimensional Euclidean space R^n, denote by $\mathcal{M}(S)$ the set of all measures μ such that μ is either (1) a nonatomic, finite, Borel measure on S such that $\mu(G) > 0$ for every nonempty open subset G of S or (2) the completion of a measure of type (1). If, for $i=1, 2$, S_i is a subset of R^n and $\mu_i \in \mathcal{M}(S_i)$, and f is a one-one transformation of S_1 onto S_2, then we say that f carries μ_1 into μ_2 provided $f[D(\mu_1)] = D(\mu_2)$ and $\mu_2(f[A]) = \mu_1(A)$ for every A in $D(\mu_1)$, where $D(\mu_i)$ is the domain of μ_i. If $S_1 = S_2$ and $\mu_1 = \mu_2$, then we say that f is μ_1-measure preserving.

In this note, we show how a minor modification of the proof of Theorem 5 of [2] yields the following result.

THEOREM 1. Suppose $\mu_1, \mu_2 \in \mathcal{M}(I^n)$, where $n \geq 2$ and I^n denotes the open unit interval in R^n, and f is a one-one transformation of I^n onto I^n which carries μ_1 into μ_2. For every $\varepsilon > 0$, there is a homeomorphism φ_ε of I^n onto I^n which carries μ_1 into μ_2 such that

$$\mu_1(\{x: f(x) \neq \varphi_\varepsilon(x)\}) = \mu_2(\{x: f^{-1}(x) \neq \varphi_\varepsilon^{-1}(x)\}) < \varepsilon.$$
REMARKS. The author has been informed recently by J. C. Oxtoby that he has, in his paper *Approximation by measure-preserving homeomorphisms*, generalized Theorem 1 (with \(\mu_1 = \mu_2 \)). In doing so, he re-proved this statement. His work was done independently and was done after the work in this paper.

A one-one transformation \(f \) of \(I^n \) onto \(I^n \) is called absolutely measurable [2] if \(f[A] \) and \(f^{-1}[A] \) are Lebesgue measurable for every Lebesgue measurable subset \(A \) of \(I^n \).

We then obtain the following result as a corollary to Theorem 1.

THEOREM 2. If \(f \) is an absolutely measurable, one-one transformation of \(I^n \) onto \(I^n \) (where \(n \geq 2 \)) and \(\epsilon > 0 \), then there is an absolutely measurable homeomorphism \(\varphi_\epsilon \) of \(I^n \) onto \(I^n \) such that

\[
m(\{x : f(x) \neq \varphi_\epsilon(x) \text{ or } f^{-1}(x) \neq \varphi_\epsilon^{-1}(x)\}) < \epsilon,
\]

where \(m \) denotes \(n \)-dimensional Lebesgue measure.

2. In this section \(n \) will always denote a fixed integer \(\geq 2 \). By an \((n-1)\)-dimensional interval in \(R^n \) we mean a set of the form

\[
\{(x_1, \cdots, x_n) \in R^n : x_k = c \} \cap \prod \{[a_j, b_j] : j = 1, \cdots, n \},
\]

where \(k \) is an integer such that \(1 \leq k \leq n \), \(c \) is a real number, and, for \(j = 1, \cdots, n \), \(a_j \) and \(b_j \) are real numbers such that \(a_j < b_j \). For any subset \(A \) of \(R^n \), we denote the interior of \(A \), the closure of \(A \), and the boundary of \(A \) by \(\text{int} \ A \), \(\text{cl} \ A \), and \(\text{bdry} \ A \), respectively.

DEFINITION. A subset \(P \) of \(R^n \) is called a \(p \)-set if \(P \) is a combinatorial \(n \)-ball (see p. 18 of [1]) and \(\text{bdry} \ P \) is the union of a finite number of \((n-1)\)-dimensional intervals.

REMARKS. (1) The \(p \)-sets used in the proof of Theorem 1 (and Theorem 5 of [2]) can be chosen to be very simple "snake-like" objects.

(2) The author wishes to thank Dr. L. C. Glaser for answering a number of questions concerning Lemma 5 of [2].

The following statement follows from Corollary 3 of [3] and Lemma 5 of [2].

LEMMA 1. Suppose, for \(i = 1, 2 \), that \(\{P(i,j) : j = 1, \cdots, r \} \) is a disjoint family of \(p \)-sets contained in the interior of the \(p \)-set \(P(i) \). For \(i = 1, 2 \), let \(Q(i) = P(i) \sim \bigcup \{\text{int} \ P(i,j) : j = 1, \cdots, r \} \), and suppose \(\mu_i \in \mathcal{M}(Q(i)) \) and \(\mu_i(\text{bdry} \ Q(i)) = 0 \). If \(\mu_1(Q(1)) = \mu_2(Q(2)) \), then every homeomorphism \(\varphi \) of \(\text{bdry} \ P(1) \) onto \(\text{bdry} \ P(2) \) can be extended to a homeomorphism \(\varphi^* \) of \(Q(1) \) onto \(Q(2) \) which carries \(\mu_1 \) into \(\mu_2 \) such that \(\varphi^*[\text{bdry} \ P(1,j)] = \text{bdry} \ P(2,j) \) for \(j = 1, \cdots, r \).
The following statement follows easily from the definition of sectionally zero dimensional set [2, p. 263].

Lemma 2. Suppose \(K \) is a sectionally zero dimensional, compact set contained in the interior of the \(P \)-set \(P \) such that \(m(K) < \gamma < m(P) \). Then there is a \(P \)-set \(Q \) such that \(K \subseteq \text{int} \ Q, \ Q \subseteq \text{int} \ P, \) and \(m(Q) = \gamma \).

Lemma 3. Suppose \(P, Q \) are \(P \)-sets contained in \(I^n \), and \(S \) and \(T \) are compact, sectionally zero dimensional sets contained in \(\text{int} \ P \) and \(\text{int} \ Q \), respectively. If \(\phi \) is an \(m \)-measure preserving homeomorphism of \(S \) onto \(T \) and \(m(P) = m(Q) \), then \(\phi \) can be extended to an \(m \)-measure preserving homeomorphism of \(P \) onto \(Q \).

We obtain a proof of Lemma 3 by making the following modifications in the proof of Theorem 1 of [2]. At the \(k \)th step of the definition of the auxiliary sets, since \(m(S_{i_1, \ldots, i_k}) = m(T_{i_1, \ldots, i_k}) \) for \(j_1 \leq m_1, \ldots, j_k \leq m_{j_1, \ldots, j_{k-1}} \), by Lemma 2, the \(P \)-sets \(P_{i_1, \ldots, i_k}, Q_{i_1, \ldots, i_k} \) can be chosen so that \(m(P_{i_1, \ldots, i_k}) = m(Q_{i_1, \ldots, i_k}) \) for \(j_1 \leq m_1, \ldots, j_k \leq m_{j_1, \ldots, j_{k-1}} \). Then, at the \(k \)th step in defining the extension of \(\phi \), instead of Lemma 5 of [2], we use Lemma 1.

Remark. In proving Theorem 1 of [2], C. Goffman uses Lemma 4 of [2]. Lemma 4 of [2] is false. However, if the following sentence is added to the hypothesis of Lemma 4, then the resulting lemma is true. For each \(I_i \), there is an interval \(J_i \) such that \(F_i \subseteq \text{int} \ J_i \) and \(J_i \subseteq P \). The modified version of Lemma 4 of [2] is sufficient for the proof of Lemma 3 (and Theorem 1 of [2]).

Proof of Theorem 1. If \(\mu_1 = \mu_2 = m \), Theorem 1 follows from Lemma 3 in exactly the same way as Theorem 5 of [2] follows from Theorem 1 of [2]. Now, suppose \(\mu_1, \mu_2 \) are arbitrary elements of \(\mathcal{M}(I^n) \) and \(f \) is as hypothesized. First, note that either both \(\mu_1 \) and \(\mu_2 \) are of type (1) or both \(\mu_1 \) and \(\mu_2 \) are of type (2). Hence, we may assume that both \(\mu_1 \) and \(\mu_2 \) are of type (2) and that \(\mu_1(I^n) = 1 \). By Theorem 2 of [3], there are homeomorphisms \(\psi \) and \(\varphi \) of \(\text{cl} \ I^n \) onto \(\text{cl} \ I^n \) such that \(\psi \) carries \(m \) into \(\mu_1 \) and \(\varphi \) carries \(\mu_2 \) to \(m \). Then \(f^* = \varphi \circ f \circ \psi \) is \(m \)-measure preserving. If \(\theta \) is an \(m \)-measure preserving homeomorphism of \(I^n \) onto \(I^n \) such that \(m(\{x : f^*(x) \neq \theta(x)\}) < \varepsilon \), then \(\varphi_\varepsilon = \varphi^{-1} \circ \theta \circ \psi^{-1} \) is the required homeomorphism.

Proof of Theorem 2. Suppose \(f \) is as hypothesized. For any Lebesgue measurable subset \(A \) of \(I^n \), let \(\mu(A) = m(f^{-1}[A]) \). Then \(\mu \in \mathcal{M}(I^n) \) and \(f \) carries \(m \) into \(\mu \). Let \(\delta > 0 \) be such that \(\delta \leq \varepsilon \) and, if \(m(A) < \delta \), then \(\mu(A) < \varepsilon \). By Theorem 1, there is a homeomorphism \(\varphi_\varepsilon \) of \(I^n \) onto \(I^n \) carrying \(m \) into \(\mu \) such that \(m(\{x : f(x) \neq \varphi_\varepsilon(x)\}) < \delta \). It is clear that \(\varphi_\varepsilon \) is the required homeomorphism.
Remarks. In proving Theorem 1 with \(\mu_1 = \mu_2 \), J. C. Oxtoby showed that \(\varphi_\varepsilon \) could be chosen to be a homeomorphism of \(\text{cl} \ I^n \) onto \(\text{cl} \ I^n \) such that \(\varphi_\varepsilon \) is equal to the identity outside of some closed interval contained in \(I^n \). It is clear that (a) the proof of Theorem 1 given here yields this, too, and (b) the \(\varphi_\varepsilon \) in Theorem 2 may be chosen to have these properties. Furthermore, in Theorem 1, \(\varphi_\varepsilon \) can be chosen to be a homeomorphism of \(\text{cl} \ I^n \) onto \(\text{cl} \ I^n \) which is equal to the identity on \(\text{bdry} \ I^n \).

References

251 N. Blackburn Road, Rt. #5, Athens, Ohio 45701