A note on spaces with normal product with some compact space
HTML articles powered by AMS MathViewer
- by R. W. Thomason
- Proc. Amer. Math. Soc. 44 (1974), 509-510
- DOI: https://doi.org/10.1090/S0002-9939-1974-0367923-8
- PDF | Request permission
Abstract:
For compact $X$ with $\log |X| \geqq \aleph ,X \times Z$ is normal only if $Z$ is $\aleph$-collectionwise normal. If $Z$ is also semimetric or $\aleph$-metacompact, it is then $\aleph$-paracompact.References
- W. W. Comfort, A survey of cardinal invariants, General Topology and Appl. 1 (1971), no. 2, 163–199. MR 290326
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- I. Juhász, Cardinal functions in topology, Mathematical Centre Tracts, No. 34, Mathematisch Centrum, Amsterdam, 1971. In collaboration with A. Verbeek and N. S. Kroonenberg. MR 0340021
- Louis F. McAuley, A note on complete collectionwise normality and paracompactness, Proc. Amer. Math. Soc. 9 (1958), 796–799. MR 99647, DOI 10.1090/S0002-9939-1958-0099647-X
- Ernest Michael, Point-finite and locally finite coverings, Canadian J. Math. 7 (1955), 275–279. MR 70147, DOI 10.4153/CJM-1955-029-6
- Ernest Michael, Some extension theorems for continuous functions, Pacific J. Math. 3 (1953), 789–806. MR 59541
- K. Morita, Paracompactness and product spaces, Fund. Math. 50 (1961/62), 223–236. MR 132525, DOI 10.4064/fm-50-3-223-236
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 44 (1974), 509-510
- MSC: Primary 54D15
- DOI: https://doi.org/10.1090/S0002-9939-1974-0367923-8
- MathSciNet review: 0367923