AN EXAMPLE IN FIXED POINT THEORY

GORDON G. JOHNSON

Abstract. An example is given of a homeomorphism of \mathbb{R}^2 onto \mathbb{R}^2 which has no fixed points, such that each of its iterates has a fixed point.

A few years ago A. Granas posed the question: Does there exist a compact metric space X and a mapping (i.e. continuous function) $f: X \to X$ with no fixed points, such that each iterate $f^n (n \geq 2)$ of f has a fixed point?

W. Kuperberg has given as a simple solution (unpublished) the following: X is the set of all points on the Cartesian plane whose polar coordinates (ρ, θ) satisfy the inequality $1 \leq \rho \leq 2$ and $f: X \to X$ by

$$f(\rho, \theta) = (\rho, \theta + (2 + \rho)\pi/3).$$

It is easy to see that f is a homeomorphism of X onto X and that f has no fixed points. Observe also that if n is an integer greater than 1, then any point on the circle $\rho = \rho_n$ is a fixed point for f^n where $\rho_n = 6K(n)/n - 2$ and $K(n)$ is an integer such that $\frac{1}{2} \leq K(n)/n \leq \frac{3}{2}$.

Our example gives an affirmative answer to the question: Is there a homeomorphism h of the Cartesian plane π onto itself which has no fixed point such that each iterate $h^n (n \geq 2)$ of h has a fixed point?

To this end, define the homeomorphism g from π onto π by $g(x, y) = (-x, y)$, let $
abla = \{(x, y): |x| \leq 8\}$, and define f on $\pi - \nabla$ to be the identity function.

We now show how to define f on ∇ such that $h = f \circ g$ is a homeomorphism of π onto π with the desired properties.

As an aid to this end, consider Figures 1 through 5.

In Figure 2 we indicate the image of a typical interval $[a, b]$ under f.

In Figure 3 we note that we require $c \to c'$, in Figure 4 that $b \to b'$, and in Figure 5 that c maps onto c'. These are the essential actions of f on ∇.

In Figure 1 we indicate the action of f on a portion of ∇ and note that $h^3(P_3) = P_3$, $h^4(P_4) = P_4$ and $h^5(P_5) = P_5$.

AMS (MOS) subject classifications (1970). Primary 54C20, 55A05.

Key words and phrases. Fixed point, iterations, homeomorphisms.
AN EXAMPLE IN FIXED POINT THEORY

Figure 2

Figure 3

Figure 4
It is clear that \(f \) can be defined on \(W \) such that \(h = f \circ g \) has the desired properties.

Department of Mathematics, University of Houston, Houston, Texas 77004