PL INVOLUTIONS ON LENS SPACES
AND OTHER 3-MANIFOLDS¹

PAIK KEE KIM

Abstract. Let \(h \) be an involution of a 3-dimensional lens space \(L=L(p,q) \). \(h \) is called sense preserving if \(h \) induces the identity of \(H_1(L) \). The purpose of this paper is to classify the orientation preserving PL involutions of \(L \) which preserve sense and have nonempty fixed point sets for \(p \) even. It follows that, up to PL equivalences, there are exactly three PL involutions on the projective 3-space \(P^3 \), and exactly seven PL involutions on \(P^3\#P^3 \).

1. Introduction. Throughout this paper, all spaces and maps are in the PL category. An involution \(h \) of a lens space \(L=L(p,q) \) is called sense preserving if \(h \) induces the identity of \(H_1(L) \). Kwun [3], [4] classified all orientation reversing involutions of \(L (\neq S^3) \) and all orientation preserving involutions of \(L(p,q) \), \(p \) odd, which preserve sense and have nonempty fixed point sets. In this paper, we will investigate all orientation preserving involutions of \(L(p,q) \), \(p \) even, which preserve sense and have nonempty fixed point sets.

Now consider free \(\mathbb{Z}_2 \)-action \(h \) on \(P^3 \). The orbit space \(M \) of \(h \) is a closed 3-manifold. Since we have a universal covering projection \(S^3\to P^3\to M \), the order of \(\Pi_1(M) \) is 4, and \(\Pi_1(M) = \mathbb{Z}_2\oplus\mathbb{Z}_2 \) or \(\mathbb{Z}_4 \). Epstein [1] completely determined all possible abelian groups which can be fundamental groups of closed 3-manifolds; \(\mathbb{Z}, \mathbb{Z}\oplus\mathbb{Z}\oplus\mathbb{Z}, \mathbb{Z}\oplus\mathbb{Z}_2 \), and \(\mathbb{Z}_r \). Hence \(\Pi_1(M) \) should be \(\mathbb{Z}_4 \). Hence \(S^3/\mathbb{Z}_4=M \). Rice [9] discussed free \(\mathbb{Z}_4 \)-action on \(S^3 \). As a consequence of the discussion, \(M=L(4,1) \), and the classification problem for free \(\mathbb{Z}_2 \)-actions on \(P^3 \) is essentially settled. It will be shown that, up to PL equivalences, there are exactly three PL involutions on \(P^3 \).

Let \(M_i \) (\(i=1, 2 \)) be 3-manifolds and \(h_i \) be involutions on \(M_i \). If there is a suitable invariant 3-cell in each \(M_i \), by taking the connected sum \(M_1\#M_2 \) along the 3-cells, one can define an involution, denoted by \(h_1\#h_2 \), of \(M_1\#M_2 \) induced by \(h_1 \) and \(h_2 \). Notice that \(h_1\#h_2 \) depends on the choice of the invariant 3-cells along whose boundaries the connected

¹ Supported in part by NSF Grant GP 29515X. This paper is a part of the author's dissertation written under Professor K. W. Kwun and submitted to Michigan State University in 1973.
sum is constructed. All orientation reversing involutions on $L(p, q)$ and $L(p', q')$ are known (see [2], [7], [10]). We will also investigate all orientation preserving PL involutions h on $P^3 # P^3$. It follows that, up to PL equivalences, there are exactly seven PL involutions on $P^3 # P^3$.

2. Fixed point sets. Let h be an orientation preserving PL involution on a lens space $L = L(p, q)$ which preserves sense and has nonempty fixed point set F. By the dimensional parity theorem, each component F_0 of F is of 1-dimension. Let U be a regular neighborhood of F_0 such that $U \cap F = F_0$. Consider the usual covering projection $g: S^3 \rightarrow L$. By the lifting theorem, we have a PL involution $\tilde{h}: (S^3, y_0) \rightarrow (S^3, y_0)$ where $g(y_0) \in F_0$. Since h is sense preserving, $g^{-1}(F_0)$ is connected, and $F = g^{-1}(F_0)$ is the fixed point set of \tilde{h}. By Waldhausen [13], F is an unknotted simple closed curve. Hence $\text{Cl}(S^3 - g^{-1}(U))$ is a solid torus, and $\text{Cl}(L - U)$ is a solid torus. An explicit argument of the above may be found in [4].

Remark 2.1. Let D^2 be the unit disk in the Gaussian plane of complex numbers and S^1 its boundary. $D^2 \times S^1$ is a solid torus whose points can be denoted by $(\rho z_1, z_2)$ where $z_1, z_2 \in S^1$ and $0 \leq \rho \leq 1$. By using Stallings' result [11], one can show that the orbit space of a free PL involution h_0 on $D^2 \times S^1$ is homeomorphic to a disk bundle over S^1, and h_0 is PL equivalent to an involution h_1 given by either $h_1(\rho z_1, z_2) = (\rho z_1, -z_2)$ or $h_1(\rho z_1, z_2) = (\rho z_1, -z_2)$. It is known [12] that any orientation preserving PL involution on $D^2 \times S^1$ with nonempty fixed point set is PL equivalent to the involution h_2 on $D^2 \times S^1$ given by $h_2(\rho z_1, z_2) = (-\rho z_1, z_2)$, and the orbit space of h_2 is a solid torus.

Theorem 2.2. If h is an orientation preserving PL involution of $L = L(p, q)$, p even, which preserves sense and has nonempty fixed point set F, then F is a disjoint union of two simple closed curves.

Proof. By the above discussion, $L = D^2 \times S^1 \cup S^1 \times D^2$ such that $D^2 \times S^1$ is an invariant regular neighborhood of a component of F for an attaching map k of $S^1 \times S^1$. Suppose the contrary that $h|S^1 \times D^2$ were free. Then by Remark 2.1, we may assume that $L = D^2 \times S^1 \cup S^1 \times D^2$ and h is given by $h(\rho z_1, z_2) = (-\rho z_1, z_2)$ on $D^2 \times S^1$ and $h(z_1, \rho z_2) = (-z_1, \rho z_2)$ on $S^1 \times D^2$ for an appropriate attaching map f of $S^1 \times S^1$. Let $(1, 0)$ and $(0, 1)$ be the canonical generators of $\Pi_1(S^1 \times S^1)$ such that $f_#(1, 0) = (a, b)$ and $f_#(0, 1) = (c, d)$, where $f_#$ is the automorphism induced by f (we disregard the base point as $\Pi_1(S^1 \times S^1, *)$ is abelian). We may assume that $|a| = 1$. One can show that by Van Kampen’s theorem,

$$\Pi_1(L) = \{\alpha, \beta \mid \beta^a = \alpha, \beta^a = 1\} = \{\beta \mid \beta^a = 1\}$$

where α and β are the canonical generators of $\Pi_1(D^2 \times S^1)$ and
\(\Pi_1(S^1 \times D^2)\), respectively. Since \(\Pi_1(L(p,q)) = z_p\), \(a = \pm p\), and \(a\) is even.

Let \(g\) and \(\bar{g}\) be the orbit maps of \(h|D^2 \times S^1\) and \(h|S^1 \times D^2\), respectively. Then by Remark 2.1, \(g(D^2 \times S^1)\) and \(\bar{g}(S^1 \times D^2)\) are solid tori. Consider the following diagram

\[
\begin{array}{ccc}
D^2 \times S^1 & \rightarrow & S^1 \times S^1 \\
\downarrow g' & & \downarrow \bar{g}' \\
D^2 \times S^1 & \rightarrow & S^1 \times S^1
\end{array}
\]

where \(g'\) and \(\bar{g}'\) are induced by \(g\) and \(\bar{g}\), respectively, and \(f'\) is the induced attaching map in the orbit space of \(h\). Notice that \(g'_p(r,s) = (2r,s)\) and \(g'_p(r,s) = (2r,s)\) for any element \((r,s) \in \Pi_1(S^1 \times S^1)\). Let \(f'_p[(1,0)] = (a', b')\) and \(f'_p[(0,1)] = (c', d')\). By chasing the above commutative diagram, easy computation shows that \(b = 2b'\), and \(b\) is even. Since \(a\) is even, we have a contradiction to the fact \(ad - bc = 1\). Therefore, \(\text{Fix}(h|S^1 \times D^2)\) cannot be empty. This completes the theorem.

Remark 2.3. By Remark 2.1, we may assume that \(L = D^2 \times S^1 \cup_r S^1 \times D^2\) and \(h\) is given by \(h(\rho z_1, z_2) = (-\rho z_1, z_2)\) on \(D^2 \times S^1\) and \(h(z_1, \rho z_2) = (z_1, -\rho z_2)\) on \(S^1 \times D^2\) for an appropriate attaching map \(f\) of \(S^1 \times S^1\).

3. Involutions on \(L(p,q)\)

Let \((1,0)\) and \((0,1)\) be the canonical generators of \(\Pi_1(S^1 \times S^1)\) and \(k\) be a PL homeomorphism of \(S^1 \times S^1\) such that \(k_p[(1,0)] = (a, b)\) and \(k_p[(0,1)] = (c, d)\). We may assume \(|d| = 1\) and \(a \geq 0\).

Definition 3.1. Define \(L_k(a,c,b,d) = D^2 \times S^1 \cup_k S^1 \times D^2\) where \(\rho = 1\) and \(a \geq 0\). We sometimes denote \(L_k(a,c,b,d)\) by \(L_k\) if no confusion arises.

By Mangler [5], the isotopy classes of homeomorphisms of \(S^1 \times S^1\) are precisely the automorphism classes of \(\Pi_1(S^1 \times S^1)\). Hence the integers \(a, b, c\) and \(d\) completely determine the isotopy class of \(k\) in Definition 3.1, and hence the homeomorphic type of \(L_k(a,c,b,d)\). As Kwun [4] pointed out, if \(a = 0\), \(L_k \approx S^2\), if \(a = 1\), \(L_k \approx S^3\), and if \(a > 1\), \(L_k \approx L(a,b)\).

Recall that \(L(p,q) \approx L(p,q')\) if and only if \(q \equiv \pm q'\) or \(qq' \equiv \pm 1\) mod \(p\) [6], [8].

Lemma 3.2. Let \(h\) be a PL involution of \(L_k(a,c,b,d)\) such that \(h(D^2 \times S^1) = D^2 \times S^1\) and \(h\) is given by \(h(\rho z_1, z_2) = (-\rho z_1, z_2)\) on \(D^2 \times S^1\) and \(h(z_1, \rho z_2) = (z_1, -\rho z_2)\) on \(S^1 \times D^2\). Then the orbit space of \(h\) is homeomorphic to \(L_k'(a,2,c,b,2d)\), and \(a\) is even, where \(k'\) is the attaching map induced by \(k\).

Proof. By Remark 2.1, the orbit spaces of \(h|D^2 \times S^1\) and \(h|S^1 \times D^2\) are solid tori, and that of \(h\) is homeomorphic to \(L_k'(a', c', b', d')\) for
suitable k', a', c', b' and d'. By computing in the same way as in Theorem 2.2, one can show that $a=2a', b=b'$, $c=c'$, and $2d=d'$.

Definition 3.3. Let p be even and a homeomorphism f of $S^1 \times S^1$ be given by $f(z_1, z_2) = (z_1^p z_2^c, z_1^b z_2^d)$. Define an involution of $L_f(p, c, b, d)$ by $h(pz_1, z_2) = (-pz_1, z_2)$ on $D^2 \times S^1$ and $h(z_1, pz_2) = (z_1, -pz_2)$ on $S^1 \times D^2$. We denote the involution by $h(p, c, b, d)$.

In the above definition, since p is even, and b is odd, one can easily check that $h = h(p, c, b, d)$ is compatible with the attaching map f, i.e., $fh = hf$.

Lemma 3.4. Let h' be any involution of $L_h(p, c, b, d)$ such that $h'(D^2 \times S^1) = D^2 \times S^1$, and $h'(pz_1, z_2) = (-pz_1, z_2)$ on $D^2 \times S^1$ and $h'(z_1, pz_2) = (z_1, -pz_2)$ on $S^1 \times D^2$. Then h' is PL equivalent to $h = h(p, c, b, d)$.

Proof. By Lemma 3.2, the orbit spaces of h and h' are $L_f(p/2, c, b, 2d)$ and $L_h(p/2, c, b, 2d)$, respectively. Therefore, f' and k' are isotopic, and there exists a PL homeomorphism $t': L_h \to L_f$ such that $t'(pz_1, z_2) = (pz_1, z_2)$ on $D^2 \times S^1$. Therefore, one can obtain a PL equivariant t by lifting t'.

Remark 3.5. By Remark 2.3 and the above lemma, we may assume that every orientation preserving PL involution h of $L(p, q)$, p even, which preserves sense and has nonempty fixed point set is $h(p, c, b, d)$ for suitable c, b, d. Since $L_f(p, c, b, d) \approx L(p, b)$, $b \equiv \pm q$ or $bq \equiv \pm 1$ mod p. By Lemma 3.2, the orbit space of h is homeomorphic to $L(p/2, b)$ where $b \equiv \pm q$ or $bq \equiv \pm 1$ mod p.

Proposition 3.6. $h = h(p, c, b, d)$ can be extended to an effective circle action.

Proof. For each $z \in S^1$, define S^1-action by $z \cdot (pz_1, z_2) = (pz_1z, z_2)$ on $D^2 \times S^1$ and $z \cdot (z_1, pz_2) = (z_1z^p, pz_2z^b)$ on $S^1 \times D^2$.

Remark 3.7. If an involution h of $L(p, q)$ can be extended to an effective circle action, h must be clearly sense preserving. By Proposition 3.6, $h(p, c, b, d)$ is sense preserving. Therefore, by Remark 3.5, the classification problem of orientation preserving PL involutions of $L(p, q)$, p even, which preserve sense and have nonempty fixed point sets is the same problem as the classification of those $h(p, c, b, d)$ for various possible c, b, d with $pd - cb = 1$.

Now we analyze the involutions $h(p, c, b, d)$. If $h(p, c, b, d)$ is equivalent to $h(p, c', b', d')$, we denote the fact by $h(p, c, b, d) \sim h(p, c', b', d')$.

Lemma 3.8. For any integers c, b, d with $pd - cb = 1$,

1. $h(p, c, b, d) \sim h(p, c', b', d')$ for any integers c' and d' with $pd' - c'b = 1$.

June
(2) \(h(p, c, b, d) \sim h(p, c, b + mp, d + mc) \).
(3) \(h(p, c, b, d) \sim h(p, -c, -b, d) \).
(4) \(h(p, c, b, d) \sim h(p, -b, -c, d) \).

Proof. We will define a homeomorphism \(t : L_f \rightarrow L_f' \) where \(L_f = L_f(p, c, b, d) \) and \(L_f' \) is the space corresponding to the equivalent involution claimed in (i), \(i = 1, 2, 3, 4 \). In (1), since \(pd - bc = 1 = pd' - bc' \), \(c' = c + mp \) and \(d' = d + mb \) for some integer \(m \). Define \(t : L_f \rightarrow L_f \) by \(t(pz_1, z_2) = (pz_1z_2^{-m}, z_2) \) on \(D^2 \times S^1 \) and \(t(z_1, pz_2) = (z_1, pz_2) \) on \(S^1 \times D^2 \).

For (2), define \(t : L_f \rightarrow L_f' \) by \(t(pz_1, z_2) = (pz_1, z_2z_1) \) on \(D^2 \times S^1 \) and \(t(z_1, pz_2) = (z_1, pz_2z_1^m) \) on \(S^1 \times D^2 \). For (3), define \(t : L_f \rightarrow L_f' \) by \(t(pz_1, z_2) = (pz_1z_2^{-1}, z_2) \) on \(D^2 \times S^1 \) and \(t(z_1, pz_2) = (z_1, pz_2z_2^{-1}) \) on \(S^1 \times D^2 \).

For (4), define \(t : L_f \rightarrow L_f' \) by \(t(pz_1, z_2) = (z_2, pz_1) \) on \(D^2 \times S^1 \) and \(t(z_1, pz_2) = (pz_2, z_1) \) on \(S^1 \times D^2 \) such that \(t(D^2 \times S^1) = S^1 \times D^2 \). It is checked that those \(t \) are well defined and equivariant homeomorphisms. This completes the proof.

Now we are in a position to state our main theorem.

Theorem 3.9. Up to PL equivalences, there is exactly one orientation preserving PL involution on \(L(p, q) \), \(p \) even, which preserves sense and has nonempty fixed point sets.

Proof. By Remark 3.7, we will consider two involutions \(h_1 = h(p, c, b, d) \) and \(h_2 = h(p, c', b', d') \). Let \(L_1 = L_f(p, c, b, d) \) and \(L_2 = L_f(p, c', b', d') \) corresponding to \(h_1 \) and \(h_2 \), respectively. Since \(L_1 \cong L(p, b) \) and \(L_2 \cong L(p, b'), \) \(b \equiv \pm b' \mod p \) or \(b' \equiv \pm 1 \mod p \). If \(b \equiv \pm b' \mod p, b = \pm b' + mp \) for some integer \(m \). By (1), (2), and (3), \(h_1 \sim h_2 \).

Suppose \(bb' \equiv \pm 1 \mod p \). Since \(pd - bc = 1, b' \equiv \pm c \mod p, \) and \(b' = \pm c + mp \) for some \(m \). By (1), (2), (3), and (4), again \(h_1 \sim h_2 \). This completes the proof.

Obviously every involution of the projective 3-space \(P^3 \) is sense preserving. Kwun [3] showed that there is exactly one orientation reversing PL involution on \(P^3 \), up to PL equivalences. Therefore, by Theorem 3.9 and some remark in the Introduction, we have:

Theorem 3.10. Up to PL equivalences, there are exactly three PL involutions on \(P^3 \).

4. PL involutions on \(P^3 \# P^3 \). Let \(M_i \) (\(i = 1, 2 \)) be oriented, connected, closed, irreducible 3-manifolds. It is known [2] that a PL involution \(h \) on \(M_1 \# M_2 \) is either the obvious involution which interchanges \(M_1 \) and \(M_2 \) or of the form \(h_1 \# h_2 \) where each \(h_i \) is a PL involution on \(M_i \). In the latter case, if \(\dim \text{Fix}(h) = 1 \), the 2-sphere along which the \(M_1 \) and \(M_2 \) are joined meets \(F \) in general position. Obviously, if \(M_1 \) is not homeomorphic to \(M_2 \), \(h \) is always of the form \(h_1 \# h_2 \). Notice that if \(h \) is of the
form $h_1 \# h_2$, $\text{Fix}(h) \neq \emptyset$. Now suppose that $M_1 = L(p, q)$ and $M_2 = L(\bar{p}, \bar{q})$, and h is of the form $h_1 \# h_2$. It will be convenient to call h decomposed sense preserving if h induces the identity of $H_1(M) = H_1(M_1) \oplus H_1(M_2)$. Obviously, if h is decomposed sense preserving, each h_i is sense preserving. Suppose that h_1 is sense preserving, $\dim \text{Fix}(h_1) = 1$ and p is even. If $L(p, q)$ is symmetric (i.e., $q^2 \equiv \pm 1 \mod p$), we claim that there exists a PL equivariant homeomorphism t on $L(p, q)$ (with respect to h_1) such that t interchanges the two components of $\text{Fix}(h_1)$. By Theorem 3.9, we may assume that $h_1 = h_1(p, c, b, d)$ on $L(p, c, b, d)$. Since $L(p, q)$ is symmetric, $b^2 \equiv \pm 1 \mod p$. Since $pd - cb = 1$, $c = \pm b + mp$ for some integer m. By Lemma 3.8, we have the following equivariant maps t_i.

\[
\begin{align*}
 h_1(p, c, b, d) &\rightarrow h_1(p, b, \pm b + mp, d) \\
 &\sim h_1(p, b, \pm b, d - mb) \\
 &\sim h(p, \pm b + mp, b, d) \\
 &\Rightarrow h(p, c, b, d).
\end{align*}
\]

Recall that $t_1(D^2 \times S^1) = S^1 \times D^2$ and $t_i(D^2 \times S^1) = D^2 \times S^1$ for $i \neq 1$. Let $t = t_1 t_2 t_3 t_4$. Then t is a PL equivariant homeomorphism on L, such that $t(0 \times S^1) = S^1 \times 0$. This implies that $h_1 \# h_2$ does not depend on how an invariant 3-cell of $L(p, q)$ is chosen to construct $h_1 \# h_2$. Therefore, the following theorem is obtained by Theorem 3.9 and Kwun's result [4].

Theorem 4.1. Up to PL equivalences, there exists exactly one decomposed sense preserving PL involution h on $L(p, q) \# L(\bar{p}, \bar{q})$, which preserves the orientation if $L(p, q)$ and $L(\bar{p}, \bar{q})$ are symmetric (p, \bar{p} are any integers). There exist exactly two such h if $L(p, q)$ is symmetric and $L(\bar{p}, \bar{q})$ is a nonsymmetric lens space with \bar{p} odd (p is any integer).

Since any involution on $P^3 \# P^3$ of the form $h_1 \# h_2$ is decomposed sense preserving, we have the following theorem.

Theorem 4.2. Let h be an orientation preserving PL involution on $P^3 \# P^3$. If $\text{Fix}(h) = \emptyset$ or $\text{Fix}(h)$ is connected, h is the obvious involution which interchanges the two P^3. If $\text{Fix}(h)$ is not connected, $\text{Fix}(h)$ is a disjoint union of three simple closed curves and there is exactly one such h, up to PL equivalences.

It is known [2], [7], [10] that there exist exactly four orientation reversing PL involutions on $P^3 \# P^3$ up to PL equivalences. Since $L(p, q)$, $p > 2$, does not admit an orientation reversing PL involution [3], any PL involution h on $L(p, q) \# L(\bar{p}, \bar{q})$ of the form $h_1 \# h_2$ must be orientation preserving if p or $\bar{p} > 2$.
REFERENCES

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823