$n$-normal lattices
HTML articles powered by AMS MathViewer
- by William H. Cornish
- Proc. Amer. Math. Soc. 45 (1974), 48-54
- DOI: https://doi.org/10.1090/S0002-9939-1974-0340133-6
- PDF | Request permission
Abstract:
An $n$-normal lattice is a distributive lattice with 0 such that each prime ideal contains at most $n$ minimal prime ideals. A relatively $n$-normal lattice is a distributive lattice such that each bounded closed interval is an $n$-normal lattice. The main results of this paper are: (1) a distributive lattice $L$ with 0 is $n$-normal if and only if for any ${x_0},{x_1}, \cdots ,{x_n}\varepsilon L$ such that ${x_i} \wedge {x_j} = 0$ for any $i \ne j,i,j = 0, \cdots ,n,{({x_0}]^ \ast } \vee {({x_1}]^ \ast } \vee \cdots \vee {({x_n}]^ \ast } = L$, (2) a distributive lattice $L$ is relatively $n$-normal if and only if for any $n + 1$ incomparable prime ideals ${P_0},{P_1}, \ldots ,{P_n},{P_0} \vee {P_1} \vee \ldots \vee {P_n} = L$.References
- William H. Cornish, Normal lattices, J. Austral. Math. Soc. 14 (1972), 200–215. MR 0313148, DOI 10.1017/S1446788700010041
- George Grätzer, Lattice theory. First concepts and distributive lattices, W. H. Freeman and Co., San Francisco, Calif., 1971. MR 0321817
- Neil Hindman, Minimal ${\mathfrak {n}}$-prime ideal spaces, Math. Ann. 199 (1972), 97–114. MR 321926, DOI 10.1007/BF01431417
- K. B. Lee, Equational classes of distributive pseudo-complemented lattices, Canadian J. Math. 22 (1970), 881–891. MR 265240, DOI 10.4153/CJM-1970-101-4
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 45 (1974), 48-54
- MSC: Primary 06A35
- DOI: https://doi.org/10.1090/S0002-9939-1974-0340133-6
- MathSciNet review: 0340133