CORRECTIONS TO
"AN ANALYTICAL CRITERION FOR THE COMPLETENESS
OF RIEMANNIAN MANIFOLDS"

WILLIAM B. GORDON

A recent article in these Proceedings [4] was concerned with the follow-
ing theorem.

Theorem. In order that a smooth riemannian manifold \(M \) be complete, it is necessary and sufficient that \(M \) support a smooth proper function \(f \) whose gradient is bounded in modulus.

The purpose of this present note is to call attention to the fact that our proof of the necessity part of the theorem contains a serious error, and that a correct proof of this part of the theorem is contained in an article by M. P. Gaffney [3]. (See also [1] and [2] for some earlier results which were tending in this direction.)

Our proof of necessity used the "fact" that an isometric embedding \(j : M \to \mathbb{R}^q \) is closed if the induced metric is complete. This is easily shown to be false; e.g., the embedding of \(\mathbb{R}^1 \) into \(\mathbb{R}^2 \) given by \(t \to (e^t, \sin t) \) is not closed but the induced metric is complete. (On the other hand, the converse statement is true; i.e. a metric induced by a closed embedding is necessarily complete.)

A correct proof can be obtained as follows: Let \(p \) be a fixed point of \(M \) and let \(f(x) = d(x, p) \), where \(d \) is the distance function corresponding to the given riemannian metric. Then the completeness of \(M \) implies that \(f \) is proper. (This is merely a restatement of that portion of the Hopf-Rinow theorem which asserts that a riemannian manifold is complete if and only if closed and bounded sets are compact.) The function \(f \) is not differentiable, but it is Lipshitz continuous with Lipshitz constant = 1; i.e., \(|f(x) - f(y)| \leq d(x, y) \). Using this fact, Gaffney [3] shows, by means of various smoothing operations and partition of unity constructions, that for any positive \(\epsilon \) there exists a smooth
approximation \(\hat{f} \) to \(f \) which satisfies (i) \(|\hat{f}(x) - f(x)| < \epsilon \) and (ii) \(|\hat{f}(y) - \hat{f}(x)| < (1 + \epsilon)d(x, y) \). The first relation implies that \(\hat{f} \) is proper, and the second implies that \(\|\nabla\hat{f}\| \leq 1 + \epsilon \).

BIBLIOGRAPHY

